skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 11, 2025

Title: Experimental and theoretical investigation of benzothiazole oxidation by OH in air and the role of O 2
Products of the oxidation of BTH by OH in air.  more » « less
Award ID(s):
2303948
PAR ID:
10579638
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Environmental Science: Processes & Impacts
Volume:
26
Issue:
12
ISSN:
2050-7887
Page Range / eLocation ID:
2177 to 2188
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Binary Co 4 Sb 12 skutterudite (also known as CoSb 3 ) has been extensively studied; however, its mixed-anion counterparts remain largely unexplored in terms of their phase stability and thermoelectric properties. In the search for complex anionic analogs of the binary skutterudite, we begin by investigating the Co 4 Sb 12 –Co 4 Sn 6 Te 6 pseudo-binary phase diagram. We observe no quaternary skutterudite phases and as such, focus our investigations on the ternary Co 4 Sn 6 Te 6 via experimental phase boundary mapping, transport measurements, and first-principles calculations. Phase boundary mapping using traditional bulk syntheses reveals that the Co 4 Sn 6 Te 6 exhibits electronic properties ranging from a degenerate p-type behavior to an intrinsic behavior. Under Sn-rich conditions, Hall measurements indicate degenerate p-type carrier concentrations and high hole mobility. The acceptor defect Sn Te , and donor defects Te Sn and Co i are the predominant defects and rationally correspond to regions of high Sn, Te, and Co, respectively. Consideration of the defect energetics indicates that p-type extrinsic doping is plausible; however, Sn Te is likely a killer defect that limits n-type dopability. We find that the hole carrier concentration in Co 4 Sn 6 Te 6 can be further optimized by extrinsic p-type doping under Sn-rich growth conditions. 
    more » « less
  2. Abstract There are only a few examples of nanocrystal synthesis with thallium (Tl). Here, we report the synthesis of uniform, ligand‐stabilized colloidal nanocrystals of TlBr and Tl2AgBr3nanocrystals with average diameter ranging between 10 and 20 nm. TlBr nanocrystals are made by hot injection of trimethylsilyl bromide (TMSBr) into solutions of oleylamine, oleic acid and octadecene with thallium (III) or thallium (I) acetate. Tl2AgBr3nanocrystals form when silver (I) acetate is included in the reaction. The TlBr nanocrystals have CsCl crystal structure with a direct band gap of 3.1 eV. The Tl2AgBr3nanocrystals have trigonal dolomite crystal structure with an indirect band gap of 3.1 eV. The TlBr nanocrystals made with thallium (III) were sufficiently uniform to assemble into face‐centered cubic (fcc) superlattices. 
    more » « less
  3. We establish the synthesis, physical properties, and highly-frustrated magnetism of Mn2In2Se5and Mn2Ga2S5van der Waals crystals. 
    more » « less
  4. Abstract Phosphane, PH3—a highly pyrophoric and toxic gas—is frequently contaminated with H2and P2H4, which makes its handling even more dangerous. The inexpensive metal–organic framework (MOF) magnesium formate, α‐[Mg(O2CH)2], can adsorb up to 10 wt % of PH3. The PH3‐loaded MOF, PH3@α‐[Mg(O2CH)2], is a non‐pyrophoric, recoverable material that even allows brief handling in air, thereby minimizing the hazards associated with the handling and transport of phosphane. α‐[Mg(O2CH)2] further plays a critical role in purifying PH3from H2and P2H4: at 25 °C, H2passes through the MOF channels without adsorption, whereas PH3adsorbs readily and only slowly desorbs under a flow of inert gas (complete desorption time≈6 h). Diphosphane, P2H4, is strongly adsorbed and trapped within the MOF for at least 4 months. P2H4@α‐[Mg(O2CH)2] itself is not pyrophoric and is air‐ and light‐stable at room temperature. 
    more » « less
  5. Alcoholysis of (C5H4SiMe)3Ln results in bimetallic complexes with unexpected decreases in Ln⋯Ln distances as bridging alkoxides become bulkier. These complexes were characterized by DOSY NMR, CV, DPV, and a LaIIspecies was observed by EPR. 
    more » « less