Methods for computing core-level ionization energies using self-consistent field (SCF) calculations are evaluated and benchmarked. These include a “full core hole” (or “ΔSCF”) approach that fully accounts for orbital relaxation upon ionization, but also methods based on Slater’s transition concept in which the binding energy is estimated from an orbital energy level that is obtained from a fractional-occupancy SCF calculation. A generalization that uses two different fractional-occupancy SCF calculations is also considered. The best of the Slater-type methods afford mean errors of 0.3–0.4 eV with respect to experiment for a dataset of K-shell ionization energies, a level of accuracy that is competitive with more expensive many-body techniques. An empirical shifting procedure with one adjustable parameter reduces the average error below 0.2 eV. This shifted Slater transition method is a simple and practical way to compute core-level binding energies using only initial-state Kohn–Sham eigenvalues. It requires no more computational effort than ΔSCF and may be especially useful for simulating transient x-ray experiments where core-level spectroscopy is used to probe an excited electronic state, for which the ΔSCF approach requires a tedious state-by-state calculation of the spectrum. As an example, we use Slater-type methods to model x-ray emission spectroscopy.
more »
« less
Accelerated Computer-Aided Screening of Optical Materials: Investigating the Potential of Δ-SCF Methods to Predict Emission Maxima of Large Dye Molecules
Accurate simulation of electronic excited states of large chromophores is often difficult due to the computationally expensive nature of existing methods. Common approximations such as fragmentation methods that are routinely applied to ground-state calculations of large molecules are not easily applicable to excited states due to the delocalized nature of electronic excitations in most practical chromophores. Thus, special techniques specific to excited states are needed. Δ-SCF methods are one such approximation that treats excited states in a manner analogous to that for ground-state calculations, accelerating the simulation of excited states. In this work, we employed the popular initial maximum overlap method (IMOM) to avoid the variational collapse of the electronic excited state orbitals to the ground state. We demonstrate that it is possible to obtain emission energies from the first singlet (S1) excited state of many thousands of dye molecules without any external intervention. Spin correction was found to be necessary to obtain accurate excitation and emission energies. Using thousands of dye-like chromophores and various solvents (12,318 combinations), we show that the spin-corrected initial maximum overlap method accurately predicts emission maxima with a mean absolute error of only 0.27 eV. We further improved the predictive accuracy using linear fit-based corrections from individual dye classes to achieve an impressive performance of 0.17 eV. Additionally, we demonstrate that IMOM spin density can be used to identify the dye class of chromophores, enabling improved prediction accuracy for complex dye molecules, such as dyads (chromophores containing moieties from two different dye classes). Finally, the convergence behavior of IMOM excited state SCF calculations is analyzed briefly to identify the chemical space, where IMOM is more likely to fail.
more »
« less
- Award ID(s):
- 2118423
- PAR ID:
- 10579739
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry A
- Volume:
- 128
- Issue:
- 39
- ISSN:
- 1089-5639
- Page Range / eLocation ID:
- 8333 to 8345
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Proper theoretical descriptions of ground and excited states are critical for understanding molecular photophysics and photochemistry. Complex interactions in experimentally interesting molecular systems require multiple approximations of the underlying quantum mechanics to practically solve for various physical observables. While high-level calculations of small molecular systems provide very accurate excitation energies, this accuracy does not always extend to larger systems or other properties. Because of this, the “best” method to study new molecules is not always clear, leading many researchers to default to inexpensive and easy-to-use black-box methods. Unfortunately, even when these methods reproduce experimental excitation energies, it is not necessarily for the right reasons. Without accurate descriptions of the underlying physics, it becomes challenging to understand new classes of molecules. Consequently, predicted properties and their trends may not offer reliable mechanistic understanding. This review is targeted at beginners in computational chemistry who are interested in studying excited-state properties. A brief overview of common ground- and excited-state methods are covered for easy reference during the comparison of methods. The primary focus of this review is to compare the accuracy of these methods for several important classes of chromophores. The performance and accuracy of each method are explored to provide practitioners a road map on what methods work well for different molecular systems and identify further work that needs to be done in the field.more » « less
-
Resonant two-photon ionization (R2PI) spectroscopy has been used to measure the bond dissociation energies (BDEs) of the diatomic transition metal nitrides ScN, TiN, YN, MoN, RuN, RhN, HfN, OsN, and IrN. Of these, the BDEs of only TiN and HfN had been previously measured. Due to the many ways electrons can be distributed among the d orbitals, these molecules possess an extremely high density of electronic states near the ground separated atom limit. Spin–orbit and nonadiabatic interactions couple these states quite effectively, so that the molecules readily find a path to dissociation when excited above the ground separated atom limit. The result is a sharp drop in ion signal in the R2PI spectrum when the molecule is excited above this limit, allowing the BDE to be readily measured. Using this method, the values D0(ScN) = 3.905(29) eV, D0(TiN) = 5.000(19) eV, D0(YN) = 4.125(24) eV, D0(MoN) = 5.220(4) eV, D0(RuN) = 4.905(3) eV, D0(RhN) = 3.659(32) eV, D0(HfN) = 5.374(4) eV, D0(OsN) = 5.732(3) eV, and D0(IrN) = 5.115(4) eV are obtained. To support the experimental findings, ab initio coupled-cluster calculations extrapolated to the complete basis set limit (CBS) were performed. With a semiempirical correction for spin–orbit effects, these coupled-cluster single double triple-CBS calculations give a mean absolute deviation from the experimental BDE values of 0.20 eV. A discussion of the periodic trends, summaries of previous work, and comparisons to isoelectronic species is also provided.more » « less
-
High-spin ground-state polyradicals are an important platform due to their potential applications in magnetic and spintronic devices. However, a low high-to-low spin energy gap limits the population of the high-spin state, precluding their application at room temperature. Also, design strategies delineating control of the ground electronic state from a closed-shell low-spin to open-shell polyradical character with a high-spin ground state are not well established. Here, we report indacenodinaphthothiophene isomers fused with a 6,6-dicyanofulvene group showing a high-spin quintet ground state. Density functional theory calculations indicate that the syn - and anti -configurations have a closed-shell low-spin singlet ground state. However, the linear -configuration displays a high-spin quintet ground state, with the energy difference between the high-spin quintet to the nearest low-spin excited states calculated to be as large as 0.24 eV (≈5.60 kcal mol −1 ), exhibiting an exclusive population of the high-spin quintet state at room temperature. These molecules are compelling synthetic targets for use in magnetic and spintronic applications.more » « less
-
Abstract Maximum overlap methods are effective tools for optimizing challenging ground‐ and excited‐state wave functions using self‐consistent field models such as Hartree‐Fock and Kohn‐Sham density functional theory. Nevertheless, such models have shown significant sensitivity to the user‐defined initial guess of the target wave function. In this work, a projection operator framework is defined and used to provide a metric for non‐aufbau orbital selection in maximum‐overlap‐methods. The resulting algorithms, termed the Projection‐based Maximum Overlap Method (PMOM) and Projection‐based Initial Maximum Overlap Method (PIMOM), are shown to perform exceptionally well when using simple user‐defined target solutions based on occupied/virtual molecular orbital permutations. This work also presents a new metric that provides a simple and conceptually convenient measure of agreement between the desired target and the current or final SCF results during a calculation employing a maximum‐overlap method.more » « less
An official website of the United States government

