We conducted a cross-ecoregion study to test the hypothesis that N-fixation and denitrification would co-occur in streams and rivers across a range of reactive N concentrations. Between 2017 and 2019, we sampled 30 streams in 13 ecoregions, using chambers to quantify N-fixation using acetylene reduction and denitrification using acetylene block. 25 of the study streams were part of the National Ecological Observatory Network or the StreamPULSE network, which provided data on water temperature, light, nutrients, discharge and metabolism. Although N-fixation and denitrification occur under contrasting environmental conditions, we found that they co-occurred in ca. 40% of stream ecosystems surveyed, and microbes capable of carrying out each process were found in all surveyed streams. This dataset includes the chamber data used to calculate nitrogen fixation and denitrification rates, stream substrate information used to scale rates from substrate to whole-reach scale, and a variety of reach-to-landscape scale covariates used to evaluate predictors of rates across the study streams.
more »
« less
Data from: Heterogeneity in habitat and nutrient availability facilitate the co-occurrence of N2 fixation and denitrification across wetland - stream - lake ecotones of Lakes Superior and Huron
Great Lakes coastlines are mosaics of wetland, stream, and lake habitats, characterized by a high degree of spatial heterogeneity that may facilitate the co-occurrence of seemingly incompatible biogeochemical processes due to variation in environmental factors that favor each process. We measured nutrient limitation and rates of N2 fixation and denitrification along transects in 5 wetland - stream - lake ecotones with different nutrient loading in Lakes Superior and Huron and hypothesized that rates of both processes would be related to nutrient limitation status, habitat type, and environmental characteristics including temperature, nutrient concentrations, and organic matter quality. This data package includes information on sampling sites, dates and locations; rates of N fixation and denitrification measured at each site, date and transect location; and biomass information from nutrient diffusing substrates deployed on the study transects.
more »
« less
- Award ID(s):
- 1451919
- PAR ID:
- 10580062
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We hypothesized that environmental variation at the patch scale (1 - 10’s m) would facilitate the co-occurrence of N2 fixation and denitrification through the formation of hot spots in streams. We measured rates of N2 fixation and denitrification and relative abundances of the genes nifH and nirS in patches determined by channel geomorphic units and substrate type in 4 Idaho and 3 Michigan streams encompassing a gradient of N and P concentrations. This data package includes patch-level measurements of N2 fixation and denitrification rates, relative gene abundances of nifH and nirS, and environmental covariates (nutrient concentrations, water temperature, surface and subsurface dissolved oxygen concentrations, organic matter content) that were used to explore the factors that could predict process rates and relative gene abundances across patches and streams.more » « less
-
In lakes, ecosystem structure and processes are influenced by gross primary production (GPP), ecosystem respiration (R), and net ecosystem production (NEP). The rates of these metabolic processes are often controlled by resource availability, which often reflects catchment loads. Although the relationship between catchment loads and in-lake nutrient concentrations may be well defined in specific lakes, we explored how watershed vs. in-lake predictors of metabolism compare across lake types. To do this, we combined stream loads of carbon (C), nitrogen (N), and phosphorus (P) with high frequency in situ monitoring of lake metabolism and in-lake C, N, and P concentrations from 16 lakes spanning a range of latitudes (39 to 64 degrees N), inflowing stream (0 - 6 streams), and trophic status (oligotrophic to eutrophic). The data package includes high-frequency dissolved oxygen, water temperature, wind speed, and solar radiation data as well as daily estimates of GPP, R, and NEP derived from those data. In addition, the data package includes in-lake and stream concentrations of dissolved organic carbon, total nitrogen, and total phosphorus and stream discharge data. The package also includes estimates of daily carbon, nitrogen and phosphorus loading to each lake derived from the stream concentrations and discharge.more » « less
-
Cyanobacterial harmful algal blooms (CyanoHABs) are an increasingly common feature of large, eutrophic lakes. Non-N2-fixing CyanoHABs (e.g., Microcystis) appear to be proliferating relative to N2-fixing CyanoHABs in systems receiving increasing nutrient loads. This shift reflects increasing external nitrogen (N) inputs, and a[50-year legacy of excessive phosphorus (P) and N loading. Phosphorus is effectively retained in legacy-impacted systems, while N may be retained or lost to the atmosphere in gaseous forms (e.g., N2, NH3, N2O). Biological control on N inputs versus outputs, or the balance between N2 fixation versus denitrification, favors the latter, especially in lakes undergoing accelerating eutrophication, although denitrification removal efficiency is inhibited by increasing external N loads. Phytoplankton in eutrophic lakes have become more responsive to N inputs relative to P, despite sustained increases in N loading. From a nutrient management perspective, this suggests a need to change the freshwater nutrient limitation and input reduction paradigms; a shift from an exclusive focus on P limitation to a dual N and P colimitation and management strategy. The recent proliferation of toxic non-N2-fixing CyanoHABs, and ever-increasing N and P legacy stores, argues for such a strategy if we are to mitigate eutrophication and CyanoHAB expansion globally.more » « less
-
Abstract Although understanding nutrient limitation of primary productivity in lakes is among the oldest research priorities in limnology, there have been few broad‐scale studies of the characteristics of phosphorus (P)‐, nitrogen (N)‐, and co‐limited lakes and their environmental context. By analyzing 3342 US lakes with concurrent P, N, and chlorophylla(Chla) samples, we showed that US lakes are predominantly co‐limited (43%) or P‐limited (41%). Majorities of lakes were P‐limited in the Northeast, Upper Midwest, and Southeast, and co‐limitation was most prevalent in the interior and western United States. N‐limitation (16%) was more prevalent than P‐limitation in the Great Basin and Central Plains. Nutrient limitation was related to lake, watershed, and regional variables, including Chlaconcentration, watershed soil, and wet nitrate deposition. N and P concentrations interactively affected nutrient–chlorophyll relationships, which differed by nutrient limitation. Our study demonstrates the value of considering P, N, and environmental context in nutrient limitation and nutrient–chlorophyll relationships.more » « less
An official website of the United States government
