Abstract Character displacement theory predicts that closely-related co-occurring species should diverge in relevant traits to reduce costly interspecific interactions such as competition or hybridization. While many studies document character shifts in sympatry, few provide corresponding evidence that these shifts are driven by the costs of co-occurrence. Black-capped (Poecile atricapillus) and mountain chickadees (Poecile gambeli) are closely-related, ecologically similar, and broadly distributed songbirds with both allopatric and sympatric populations. In sympatry, both species appear to suffer costs of their co-occurrence: (a) both species are in worse body condition compared to allopatry and (b) hybridization sometimes yields sterile offspring. Here, we explored character displacement in the songs of black-capped and mountain chickadees by characterizing variation in male songs from sympatric and allopatric populations. We found that mountain chickadees sing differently in sympatry versus allopatry. Specifically, they produced more notes per song, were more likely to include an extra introductory note, and produced a smaller glissando in their first notes compared to all other populations. Combined with previous research on social dominance and maladaptive hybridization between black-capped and mountain chickadees, we posit that differences in sympatric mountain chickadee song are population-wide shifts to reduce aggression from dominant black-capped chickadees and/or prevent maladaptive hybridization.
more »
« less
Evolution of species recognition when ecology and sexual selection favor signal stasis
Abstract The process of reproductive character displacement involves divergence and/or the narrowing of variance in traits involved in species recognition, driven by interactions between taxa. However, stabilizing sexual selection may favor stasis and species similarity in these same traits if signals are optimized for transmission through the prevailing environment. Further, sexual selection may promote increased variability within species to facilitate individual recognition. Here we ask how the conflicting selection pressures of species recognition and sexual selection are resolved in a genus of Himalayan birds that sing exceptionally similar songs. We experimentally show that small differences in two traits (note shape and peak frequency) are both necessary and sufficient for species recognition. Song frequency shows remarkable clinal variation along the Himalayan elevational gradient, being most divergent where species co-occur, the classic signature of reproductive character displacement. Note shape shows no such clinal variation but varies more between individuals of an allopatric species than it does among individuals within species that co-occur. We argue that the different note shapes experience similar transmission constraints, and differences produced through species interactions spread back through the entire species range. Our results imply that reproductive character displacement is likely to be common.
more »
« less
- Award ID(s):
- 2031105
- PAR ID:
- 10580235
- Editor(s):
- Araya-Ajoy, Yimen Gerardo; Wolf, Jason
- Publisher / Repository:
- evolution
- Date Published:
- Journal Name:
- Evolution
- Volume:
- 78
- Issue:
- 10
- ISSN:
- 0014-3820
- Page Range / eLocation ID:
- 1647 to 1660
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The establishment of reproductive isolation between species via gametic incompatibility initially requires within-species variation in reproductive compatibility. We investigate how within-species variation in sperm and egg recognition proteins, potentially generated via sexual conflict, influences reproductive isolation between two partially sympatric sea urchin species; the North American west coast Mesocentrotus franciscanus and the circumpolar Strongylocentrotus droebachiensis. Barriers to hybridization are stronger when eggs are given a choice of conspecific versus heterospecific sperm and the variation in hybridization among crosses can be explained by whether the sperm or egg protein variant is ancestral or derived. Derived proteins can be recognized as different and prevent hybridization. Examination of the allele frequencies of these proteins in M. franciscanus in and out of sympatry with S. droebachiensis along the west coast of North America reveals evidence of reinforcement selection and reproductive character displacement in eggs but not sperm, which likely reflects the differential cost of hybridization for males and females.more » « less
-
Asexual species, despite lacking recombination, can evolve in response to environmental changes and influence the evolutionary trajectory of coexisting sexual species. Gynogenesis, where asexual females rely on sperm from males of a different species, offers a unique perspective on the eco-evolutionary dynamics between asexual females and their sexual hosts. The Amazon molly,Poecilia formosa, is a gynogenetic species that primarily uses sperm from two sympatric sexual species: the sailfin molly (P. latipinna) and the Atlantic molly (P. mexicana). To understand shape variation in an asexual species relative to their sexual hosts, we analysed shape variation among wild Amazon mollies and their sexual hosts. We tested three hypotheses: (i) Amazon mollies mimic their sexual hosts to enhance mating opportunities (sexual mimicry hypothesis); (ii) ecological interactions or male mate choice drive morphological divergence (character displacement hypothesis); and (iii) Amazon mollies exhibit random shape variation due to their asexual nature (null hypothesis). Our findings revealed significant shape variation in Amazon mollies, which differ from their sexual hosts in a host-specific manner (e.g. Amazon mollies withP. latipinnaresembleP. mexicanaand vice versa), supporting character displacement at the interspecific level in a sexual–asexual system.more » « less
-
null (Ed.)Interactions between species can influence access to resources and successful reproduction. One possible outcome of such interactions is reproductive character displacement. Here, the similarity of reproductive traits – such as flowering time – among close relatives growing in sympatry differ more so than when growing apart. However, evidence for the overall prevalence and direction of this phenomenon, or the stability of such differences under environmental change, remains untested across large taxonomic and spatial scales. We apply data from tens of thousands of herbarium specimens to examine character displacement in flowering time across 110 animal-pollinated angiosperm species in the eastern USA. We demonstrate that the degree and direction of phenological displacement among co-occurring closely related species pairs varies tremendously. Overall, flowering time displacement in sympatry is not common. However, displacement is generally greater among species pairs that flower close in time, regardless of direction. We additionally identify that future climate change may alter the nature of phenological displacement among many of these species pairs. On average, flowering times of closely related species were predicted to shift further apart by the mid-21st century, which may have significant future consequences for species interactions and gene flow.Competing Interest StatementThe authors have declared no competing interest.more » « less
-
Herberstein, Marie (Ed.)Abstract Interspecific territoriality has complex ecological and evolutionary consequences. Species that interact aggressively often exhibit spatial or temporal shifts in activity that reduce the frequency of costly encounters. We analyzed data collected over a 13-year period on 50 populations of rubyspot damselflies (Hetaerina spp.) to examine how rates of interspecific fighting covary with fine-scale habitat partitioning and to test for agonistic character displacement in microhabitat preferences. In most sympatric species, interspecific fights occur less frequently than expected based on the species’ relative densities. Incorporating measurements of spatial segregation and species discrimination into the calculation of expected frequencies accounted for most of the reduction in interspecific fighting (subtle differences in microhabitat preferences could account for the rest). In 23 of 25 sympatric population pairs, we found multivariate differences between species in territory microhabitat (perch height, stream width, current speed, and canopy cover). As predicted by the agonistic character displacement hypothesis, sympatric species that respond more aggressively to each other in direct encounters differ more in microhabitat use and have higher levels of spatial segregation. Previous work established that species with the lowest levels of interspecific fighting have diverged in territory signals and competitor recognition through agonistic character displacement. In the other species pairs, interspecific aggression appears to be maintained as an adaptive response to reproductive interference, but interspecific fighting is still costly. We now have robust evidence that evolved shifts in microhabitat preferences also reduce the frequency of interspecific fighting.more » « less
An official website of the United States government

