skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Converging or diverging? Shape coevolution between a sperm-dependent asexual and its sexual hosts
Asexual species, despite lacking recombination, can evolve in response to environmental changes and influence the evolutionary trajectory of coexisting sexual species. Gynogenesis, where asexual females rely on sperm from males of a different species, offers a unique perspective on the eco-evolutionary dynamics between asexual females and their sexual hosts. The Amazon molly,Poecilia formosa, is a gynogenetic species that primarily uses sperm from two sympatric sexual species: the sailfin molly (P. latipinna) and the Atlantic molly (P. mexicana). To understand shape variation in an asexual species relative to their sexual hosts, we analysed shape variation among wild Amazon mollies and their sexual hosts. We tested three hypotheses: (i) Amazon mollies mimic their sexual hosts to enhance mating opportunities (sexual mimicry hypothesis); (ii) ecological interactions or male mate choice drive morphological divergence (character displacement hypothesis); and (iii) Amazon mollies exhibit random shape variation due to their asexual nature (null hypothesis). Our findings revealed significant shape variation in Amazon mollies, which differ from their sexual hosts in a host-specific manner (e.g. Amazon mollies withP. latipinnaresembleP. mexicanaand vice versa), supporting character displacement at the interspecific level in a sexual–asexual system.  more » « less
Award ID(s):
1916519 1931657 2423844
PAR ID:
10655861
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Royal Society
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
292
Issue:
2050
ISSN:
1471-2954
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The role of hybridization as a formative process in evolution has received much attention in the past few decades. A particularly fascinating outcome of hybrid speciation is the formation of asexual hybrid species. The Amazon molly (Poecilia formosa) is such a hybrid and originated from aP. mexicanamother and aP. latipinnafather. Consequently, a heterospecific mating must have occurred leading to the Amazon molly, indicating a breakdown of any potential prezygotic isolation between parental species. Here we studied the female mate preferences of extantP. mexicanaandP. latipinnafrom several populations using standard binary choice tests with males of both sexual species that were matched for size.Poecilia mexicanaandP. latipinnacan be crossed in the lab, however, the offspring are not asexual, but sexual F1s. In our study, we generated F1s and tested their mating preferences with sexual males of bothP. mexicanaandP. latipinnaagainst F1males. Overall, our results show that in extantP. mexicanaandP. latipinnano female preference for conspecific males was detectable. Consequently, heterospecific matings are possible and not hindered by any apparent behavioral prezygotic isolation. If female preferences in these species were comparable around the time the Amazon molly originated as a hybrid species ca. 100,000 years ago, matings leading to hybrids would be very likely. F1females also have no discernable mating preferences for either sexual males or F1males. Such lack of prezygotic behavioral isolation could potentially lead to F2individuals, backcrosses, and introgression. 
    more » « less
  2. Abstract The establishment of reproductive isolation between species via gametic incompatibility initially requires within-species variation in reproductive compatibility. We investigate how within-species variation in sperm and egg recognition proteins, potentially generated via sexual conflict, influences reproductive isolation between two partially sympatric sea urchin species; the North American west coast Mesocentrotus franciscanus and the circumpolar Strongylocentrotus droebachiensis. Barriers to hybridization are stronger when eggs are given a choice of conspecific versus heterospecific sperm and the variation in hybridization among crosses can be explained by whether the sperm or egg protein variant is ancestral or derived. Derived proteins can be recognized as different and prevent hybridization. Examination of the allele frequencies of these proteins in M. franciscanus in and out of sympatry with S. droebachiensis along the west coast of North America reveals evidence of reinforcement selection and reproductive character displacement in eggs but not sperm, which likely reflects the differential cost of hybridization for males and females. 
    more » « less
  3. Understanding how individual differences arise and how their effects propagate through groups are fundamental issues in biology. Individual differences can arise from indirect genetic effects (IGE): genetically based variation in the conspecifics with which an individual interacts. Using a clonal species, the Amazon molly ( Poecilia formosa ), we test the hypothesis that IGE can propagate to influence phenotypes of the individuals that do not experience them firsthand. We tested this by exposing genetically identical Amazon mollies to conspecific social partners of different clonal lineages, and then moving these focal individuals to new social groups in which they were the only member to have experienced the IGE. We found that genetically different social environments resulted in the focal animals experiencing different levels of aggression, and that these IGE carried over into new social groups to influence the behaviour of naive individuals. These data reveal that IGE can cascade beyond the individuals that experience them. Opportunity for cascading IGE is ubiquitous, especially in species with long-distance dispersal or fission–fusion group dynamics. Cascades could amplify (or mitigate) the effects of IGE on trait variation and on evolutionary trajectories. Expansion of the IGE framework to include cascading and other types of carry-over effects will therefore improve understanding of individual variation and social evolution and allow more accurate prediction of population response to changing environments. 
    more » « less
  4. Predation threat is a major driver of behavior in many prey species. Animals can recognize their relative risk of predation based on cues in the environment, including visual and/or chemical cues released by a predator or from its prey. When threat of predation is high, prey often respond by altering their behavior to reduce their probability of detection and/or capture. Here, we test how a clonal fish, the Amazon molly (Poecilia formosa), behaviorally responds to predation cues. We measured aggressive and social behaviors both under ‘risk’, where chemical cues from predatory fish and injured conspecifics were present, and control contexts (no risk cues present). We predicted that mollies would exhibit reduced aggression towards a simulated intruder and increased sociability under risk contexts as aggression might increase their visibility to a predator and shoaling should decrease their chance of capture through the dilution effect. As predicted, we found that Amazon mollies spent more time with a conspecific when risk cues were present, however they did not reduce their aggression. This highlights the general result of the ‘safety in numbers’ behavioral response that many small shoaling species exhibit, including these clonal fish, which suggests that mollies may view this response as a more effective anti-predator response compared to limiting their detectability by reducing aggressive conspecific interactions. 
    more » « less
  5. Abstract Sexual reproduction is the primary mode of reproduction in eukaryotes, but some organisms have evolved deviations from classical sex and switched to asexuality. These asexual lineages have sometimes been viewed as evolutionary dead ends, but recent research has revealed their importance in many areas of general biology. Our review explores the understudied, yet important mechanisms by which sperm‐dependent asexuals that produce non‐recombined gametes but rely on their fertilization, can have a significant impact on the evolution of coexisting sexual species and ecosystems. These impacts are concentrated around three major fields. Firstly, sperm‐dependent asexuals can potentially impact the gene pool of coexisting sexual species by either restricting their population sizes or by providing bridges for interspecific gene flow whose type and consequences substantially differ from gene flow mechanisms expected under sexual reproduction. Secondly, they may impact on sexuals' diversification rates either directly, by serving as stepping‐stones in speciation, or indirectly, by promoting the formation of pre‐ and postzygotic reproduction barriers among nascent species. Thirdly, they can potentially impact on spatial distribution of species, via direct or indirect (apparent) types of competition and Allee effects. For each such mechanism, we provide empirical examples of how natural sperm‐dependent asexuals impact the evolution of their sexual counterparts. In particular, we highlight that these broad effects may last beyond the tenure of the individual asexual lineages causing them, which challenges the traditional perception that asexual lineages are short‐lived evolutionary dead ends and minor sideshows. Our review also proposes new research directions to incorporate the aforementioned impacts of sperm‐dependent asexuals. These research directions will ultimately enhance our understanding of the evolution of genomes and biological interactions in general. 
    more » « less