Animals use climate-related environmental cues to fine-tune breeding timing and investment to match peak food availability. In birds, spring temperature is a commonly documented cue used to initiate breeding, but with global climate change, organisms are experiencing both directional changes in ambient temperatures and extreme year-to-year precipitation fluctuations. Montane environments exhibit complex climate patterns where temperatures and precipitation change along elevational gradients, and where exacerbated annual variation in precipitation has resulted in extreme swings between heavy snow and drought. We used 10 years of data to investigate how annual variation in climatic conditions is associated with differences in breeding phenology and reproductive performance in resident mountain chickadees (Poecile gambeli) at two elevations in the northern Sierra Nevada mountains, USA. Variation in spring temperature was not associated with differences in breeding phenology across elevations in our system. Greater snow accumulation was associated with later breeding initiation at high, but not low, elevation. Brood size was reduced under drought, but only at low elevation. Our data suggest complex relationships between climate and avian reproduction and point to autumn climate as important for reproductive performance, likely via its effect on phenology and abundance of invertebrates.
more »
« less
Relative breeding timing and reproductive success of a resident montane bird species
Wild populations appear to synchronize their reproductive phenology based on numerous environmental and ecological factors; yet, there is still individual variation in the timing of reproduction within populations and such variation may be associated with fitness consequences. For example, many studies have documented a seasonal decline in reproductive fitness, but breeding timing may have varying consequences across different environments. Using 11 years of data, we investigated the relationship between relative breeding timing and reproductive success in resident mountain chickadees (Poecile gambeli) across two elevational bands in the Sierra Nevada mountains, USA. Chickadees that synchronized breeding with the majority of the population (‘peak’ of breeding) did not have the highest breeding success. Instead, birds that bred early performed best at high elevation, while at low elevation early and peak nests performed similarly. At both elevations, late nests consistently performed the worst. Overall, breeding success decreased with increasing relative timing at both high and low elevations, but the relationship between breeding success and timing differed among years. Our results suggest that in mountain chickadees, earlier breeding is associated with higher reproductive success, especially at high elevations, while late breeding is consistently associated with lower reproductive success at both elevations.
more »
« less
- PAR ID:
- 10580288
- Publisher / Repository:
- Royal Society
- Date Published:
- Journal Name:
- Royal Society Open Science
- Volume:
- 11
- Issue:
- 7
- ISSN:
- 2054-5703
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Many organisms engage in metabolic tradeoffs to manage costs associated with reproductive output which often leads to these costs carrying over into the future. Compensatory mechanisms vary across life history strategies and are expected to result in near-optimal fitness gains for the investor. Here we investigated whether environmental differences associated with increasing montane elevation and variation in reproductive output of a resident passerine songbird, the Mountain Chickadee (Poecile gambeli), were related to physiological conditions during annual molt. Higher elevations are associated with harsher environmental conditions during the winter, which results in later and shorter breeding seasons than at lower elevations. We sampled the outermost tail feathers from adult birds in the fall after their prebasic molt, which initiates closely after reproduction (e.g., after parental care has ceased, ~1–3 weeks). We measured the hormone corticosterone deposited in feathers (fCORT) and feather growth rates for evidence of physiological effort predicted to be driven by several units of reproductive output (e.g., breeding timing, clutch and brood size, and offspring mass). There were no relationships between any measure of reproductive output and feather characteristics between elevations or across years, despite substantial variation in reproductive output in the wider population across this same time. However, birds at the high-elevation site grew their tail feathers significantly faster and had higher fCORT deposition compared to low-elevation birds. These results suggest that although differences in reproductive output and any related signals of associated physiological effort (e.g., fCORT and feather growth rate) may not extend into individual conditions during annual molt, shorter breeding seasons associated with harsher environmental conditions may favor faster feather growth as required by earlier onset of winter.more » « less
-
Environmental drivers of within-population reproductive patterns are often hypothesized to lead to reproductive strategies tuned to local conditions. Organisms adjust energy allocation between survival and reproduction based on experience, age, lifespan and resource availability. Variation in these energetic investments can be described as different demographic tactics which are expected to optimize the fitness of local populations. These ideas are largely supported by both empirical and model-based studies but research identifying specific strategies and their corresponding environmental drivers within wild populations remains rare. Using 12 years of data, we investigated reproductive investment strategies in a relatively short-lived resident songbird, the mountain chickadee (Poecile gambeli), at two elevations that differ in environmental harshness in the North American Sierra Nevada mountains. Challenging winter environments at high elevations impose strong selection pressure on survival-related traits (e.g. specialized spatial cognition associated with food caching) and significantly shorten the length of the reproductive window. Here, we show that chickadees at a higher elevation lay smaller clutches (ca0.41 fewer eggs) and produce fewer (ca0.25 fewer nestlings) but larger offspring (ca0.4 g heavier) compared to lower elevation residents. Due to the harsher and less predictable environmental conditions at higher elevations, this investment strategy in this resident species likely leads to the production of offspring with greater chances of survival. Overall, our results show that within-species differences in life history strategies may evolve over a small spatial scale along strong environmental gradients.more » « less
-
Abstract Many animals disperse from their natal sites as juveniles to settle in new locations where they may eventually breed. Estimating distances of such postnatal dispersal within and across populations, as well as identifying factors affecting recruitment success, is important for understanding the evolutionary consequences of dispersal. We investigated patterns of postnatal dispersal and identified predictors of successful recruitment in highly resident Poecile gambeli (Mountain Chickadee) using data on 326 recruits of 5,226 total fledglings detected at winter feeders (recruitment into winter flocks) and nest boxes (recruitment into the breeding population) over 12 years at 2 elevational sites in the northern Sierra Nevada, USA. Like most Parids, chickadees dispersed close to their natal sites (median distance: 644 m). Dispersal distance was not associated with fledgling mass, but females dispersed significantly longer distances than males. When only considering dispersal distances based on recaptures at nest boxes, birds that fledged earlier dispersed significantly shorter distances. Successful recruitment both into winter flocks and into the breeding population was associated with higher fledgling mass and earlier fledging. Over the study period, only 13 birds were detected dispersing from one elevational site to the other, and 12 of these birds hatched at low elevation and dispersed to the high-elevation site. Our results suggest that earlier fledging timing and higher fledgling mass are both critical for successful recruitment in P. gambeli and confirm that fledgling mass is a key measure of individual quality in which even small differences in mass (~2%–3%) may have important implications for recruitment and, therefore, fitness.more » « less
-
null (Ed.)Abstract Group-size variation is common in colonially breeding species, including seabirds, whose breeding colonies can vary in size by several orders of magnitude. Seabirds are some of the most threatened marine taxa and understanding the drivers of colony size variation is more important than ever. Reproductive success is an important demographic parameter that can impact colony size, and it varies in association with a number of factors, including nesting habitat quality. Within colonies, seabirds often aggregate into distinct groups or subcolonies that may vary in quality. We used data from two colonies of Adélie penguins 73 km apart on Ross Island, Antarctica, one large and one small to investigate (1) How subcolony habitat characteristics influence reproductive success and (2) How these relationships differ at a small (Cape Royds) and large (Cape Crozier) colony with different terrain characteristics. Subcolonies were characterized using terrain attributes (elevation, slope aspect, slope steepness, wind shelter, flow accumulation), as well group characteristics (area/size, perimeter-to-area ratio, and proximity to nest predators). Reproductive success was higher and less variable at the larger colony while subcolony characteristics explained more of the variance in reproductive success at the small colony. The most important variable influencing subcolony quality at both colonies was perimeter-to-area ratio, likely reflecting the importance of nest predation by south polar skuas along subcolony edges. The small colony contained a higher proportion of edge nests thus higher potential impact from skua nest predation. Stochastic environmental events may facilitate smaller colonies becoming “trapped” by nest predation: a rapid decline in the number of breeding individuals may increase the proportion of edge nests, leading to higher relative nest predation and hindering population recovery. Several terrain covariates were retained in the final models but which variables, the shapes of the relationships, and importance varied between colonies.more » « less
An official website of the United States government

