skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Humpback whale ( Megaptera novaeangliae ) breathing sound characteristics from simultaneous above and underwater measurements
Humpback whale breathing-related sounds were recorded on elements of a coherent hydrophone array subaperture deployed vertically at the Great South Channel on the US Northeastern continental shelf in Fall 2021, where half of the hydrophones were in-air and the rest submerged underwater. In-air hydrophones recorded breathing sounds with approximately 2.5 s duration, but smaller bandwidths compared to underwater hydrophones where signal energies extended beyond 50 kHz, and a mean underwater source level of 161 ± 4 dB re 1 μPa at 1 m, based on measurements at 22.9 m. The underwater recorded humpback whale breathing sound spectra displayed a broadband dip centered at 15.7 kHz, with approximately 400 Hz half-power bandwidth, likely caused by attenuation from propagation through pulsating air bubbles. The air bubble radius for natural frequency of oscillations at 15.7 kHz is estimated to be 0.205–0.21 mm. These bubbles are capable of removing energy from the forward propagated humpback breathing sounds via resonance absorption most pronounced at and near bubble natural oscillation frequency. Humpback whale distances from the vertically deployed hydrophones are estimated and tracked by matching the curved nonlinear travel-time wavefront of its breathing sounds, since the whale was in the near-field of the subarray.  more » « less
Award ID(s):
2219953 2345791
PAR ID:
10580505
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Acoustical Society of America (ASA)
Date Published:
Journal Name:
The Journal of the Acoustical Society of America
Volume:
157
Issue:
4
ISSN:
1520-8524
Format(s):
Medium: X Size: p. 2304-2318
Size(s):
p. 2304-2318
Sponsoring Org:
National Science Foundation
More Like this
  1. An eight-element oil-filled hydrophone array is used to measure the acoustic field in littoral waters. This prototype array was deployed during an experiment between Jeffrey’s Ledge and the Stellwagen Bank region off the coast of Rockport, Massachusetts USA. During the experiment, several humpback whale vocalizations, distant ship tonals and high frequency conventional echosounder pings were recorded. Visual confirmation of humpback moving in bearing relative to the array verifies the directional sensing from array beamforming. During deployment, the array is towed at speeds varying from 4-7 kts in water depths of roughly 100 m with conditions at sea state 2 to 3. This array system consists of a portable winch with array, tow cable and 3 water-resistant boxes housing electronics. This system is deployed and operated by 2 crew members onboard a 13 m commercial fishing vessel during the experiment. Non-acoustic sensor (NAS) information is obtained to provide depth, temperature, and heading data using commercial off the shelf (COTS) components utilizing RS485/232 data communications. Acoustic data sampling was performed at 8 kHz, 30 kHz and 100 kHz with near real-time processing of data and enhanced Signal to Noise Ratio (SNR) from beamforming. The electrical system components are deployed with 3 stacked electronics boxes housing power, data acquisition and data processing components in water resistant compartments. A laptop computer with 8 TB of external storage and an independent Global Positioning System (GPS) antenna is used to run Passive Ocean Acoustic Waveguide Remote Sensing (POAWRS) software providing beamformed spectrogram data and live NAS data with capability of capturing several days of data. The acquisition system consists of Surface Mount Device (SMD) pre-amplifiers with filter to an analog differential pair shipboard COTS acquisition system. Pre-amplifiers are constructed using SMD technology where components are pressure tolerant and potting is not necessary. Potting of connectors, electronics and hydrophones via 3D printed molding techniques will be discussed. Array internal components are manufactured with Thermoplastic Polyurethane (TPU) 3D printed material to dampen array vibrations with forward and aft vibration isolation modules (VIM). Polyurethane foam (PUF) used to scatter breathing waves and dampen contact from wires inside the array without attenuating high frequencies and allowing for significant noise reduction. A single Tygon array section with a length of 7.5 m and diameter of 38 mm contains 8 transducer elements with a spacing of 75 cm (1 kHz design frequency). Pre- amplifiers and NAS modules are affixed using Vectran and steel wire rope positioned by swaged stops along the strength member. The tow cable length is 100 m with a diameter of 22 mm that is potted to a hose adapter to break out 12 braided copper wire twisted pair conductors and terminates the tow cable Vectran braid. This array in its current state of development is a low-cost alternative to obtain quality acoustic data from a towed array system. Used here for observation of whale vocalizations, this type of array also has many applications in military sonar and seismic surveying. Maintenance on the array can be performed without the use of special facilities or equipment for dehosing and conveniently uses castor oil as an environmentally safe pressure compensating and coupling fluid. Array development including selection of transducers, NAS modules, acoustic acquisition system, array materials and method of construction with results from several deployments will be discussed. We also present beamformed spectrograms containing humpback whale downsweep moans and underwater blowing (bubbles) sounds associated with feeding on sand lance (Ammodytes dubius). 
    more » « less
  2. Abstract Rain in tropical cyclones is studied using eight time series of underwater ambient sound at 40–50 kHz with wind speeds up to 45 m s−1beneath three tropical cyclones. At tropical cyclone wind speeds, rain- and wind-generated sound levels are comparable, and therefore rain cannot be detected by sound level alone. A rain detection algorithm that is based on the variations of 5–30-kHz sound levels with periods longer than 20 s and shorter than 30 min is proposed. Faster fluctuations (<20 s) are primarily due to wave breaking, and slower ones (>30 min) are due to overall wind variations. Higher-frequency sound (>30 kHz) is strongly attenuated by bubble clouds. This approach is supported by observations that, for wind speeds < 40 m s−1, the variation in sound level is much larger than that expected from observed wind variations and is roughly comparable to that expected from rain variations. The hydrophone results are consistent with rain estimates by the Tropical Rainfall Measuring Mission (TRMM) satellite and with Stepped-Frequency Microwave Radiometer (SFMR) and radar estimates by surveillance flights. The observations indicate that the rain-generated sound fluctuations have broadband acoustic spectra centered around 10 kHz. Acoustically detected rain events usually last for a few minutes. The data used in this study are insufficient to produce useful estimation of rain rate from ambient sound because of limited quantity and accuracy of the validation data. The frequency dependence of sound variations suggests that quantitative rainfall algorithms from ambient sound may be developed using multiple sound frequencies. Significance StatementRain is an indispensable process in forecasting the intensity and path of tropical cyclones. However, its role in the air–sea interaction is still poorly understood, and its parameterization in numerical models is still in development. In this work, we analyzed sound measurements made by hydrophones on board Lagrangian floats beneath tropical cyclones. We find that wind, rain, and breaking waves each have distinctive signatures in underwater ambient sound. We suggest that the air–sea dynamic processes in tropical cyclones can be explored by listening to ambient sound using hydrophones beneath the sea surface. 
    more » « less
  3. The presented data contain recordings of underwater acoustic transmissions collected from a field experiment whose goal was to characterize self-interference for in-band full-duplex underwater acoustic communications. The experiment was conducted in the Lake of Tuscaloosa in July 2019. A single transmission-receiving line was deployed off a boat that was moored in the center of the lake. The transmission-receiving line had one acoustic transmitter and eight hydrophone receivers. Two types of signals, binary phase-shift keying (BPSK) and orthogonal frequency-division multiplexing (OFDM), were transmitted at the center frequency of 28 kHz. The receptions were recorded in .wav audio files by eighter high-precision digital hydrophones. In addition to the acoustic data, a complete set of source information, environmental measurements, and processed impulse responses are included in the data package. Matlab programs are also provided to retrieve the data and facilitate further analysis. 
    more » « less
  4. The vocalization behavior of humpback whales in the Norwegian and Barents Seas is examined based on recordings of a large-aperture, densely-populated coherent hydrophone array system. The passive ocean acoustic waveguide remote sensing (POAWRS) technique is employed to provide detection, bearing-time estimation, time-frequency characterization and classification of the humpback whale vocalizations. The song vocalizations, composed of highly structured and repeatable set of phrases, were detected throughout the diel cycle between February 18 to March 8, 2014. The beamformed spectrograms of the detected humpback vocalizations are classified as song sequences based on inter-pulse intervals and time-frequency characteristics, verified by visual inspection. The song structure is compared for humpback whale vocalizations recorded at three distinct regions off the Norwegian coast, Alesund, Lofoten and Northern Finmark. Multiple bearing-time trajectories for humpback songs were simultaneously observed indicating multiple singers present at each measurement site. Humpback whale received call rates and temporo-spatial distributions are compared across the three measurement sites. Geographic mapping of humpback whale calls from their bearing-time trajectories is accomplished via the moving array triangulation technique. 
    more » « less
  5. Humpback whale behavior, population distribution and structure can be inferred from long term underwater passive acoustic monitoring of their vocalizations. Here we develop automatic approaches for classifying humpback whale vocalizations into the two categories of song and non-song, employing machine learning techniques. The vocalization behavior of humpback whales was monitored over instantaneous vast areas of the Gulf of Maine using a large aperture coherent hydrophone array system via the passive ocean acoustic waveguide remote sensing technique over multiple diel cycles in Fall 2006. We use wavelet signal denoising and coherent array processing to enhance the signal-to-noise ratio. To build features vector for every time sequence of the beamformed signals, we employ Bag of Words approach to time-frequency features. Finally, we apply Support Vector Machine (SVM), Neural Networks, and Naive Bayes to classify the acoustic data and compare their performances. Best results are obtained using Mel Frequency Cepstrum Coefficient (MFCC) features and SVM which leads to 94% accuracy and 72.73% F1-score for humpback whale song versus non-song vocalization classification, showing effectiveness of the proposed approach for real-time classification at sea. 
    more » « less