skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Clustering future scenarios based on predicted range maps
Abstract Predictions of biodiversity trajectories under climate change are crucial in order to act effectively in maintaining the diversity of species. In many ecological applications, future predictions are made under various global warming scenarios, as described by a range of different climate models. We propose a clustering methodology to synthesize and interpret the outputs of these various predictions.We propose an interpretable and flexible two‐step methodology to measure the similarity between predicted species range maps and to cluster the future scenario predictions utilizing a spectral clustering technique. We implement and provide code for this method.We find that clustering based on predicted species range maps is mainly driven by the amount of warming rather than climate model or future scenario. We contrast this with clustering based only on predicted climate variables, which is driven primarily by climate models, that is, scenarios of the same climate model are clustered together, even when the amount of warming input to the models is varied.The differences between species‐based and climate‐based clusterings illustrate that it is crucial to incorporate ecological information to understand the relevant differences between climate models. Our findings can be used to better synthesize forecasts of biodiversity change under the wide spectrum of results that emerge when considering potential future scenarios.  more » « less
Award ID(s):
1455172 1934985 1940276 1940124
PAR ID:
10580765
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Methods in Ecology and Evolution
Volume:
14
Issue:
5
ISSN:
2041-210X
Page Range / eLocation ID:
1346 to 1360
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Joshua trees are long‐lived perennial monocots native to the Mojave Desert in North America. Composed of two species,Yucca brevifoliaandY. jaegeriana(Asparagaceae), Joshua trees are imperiled by climate change, with decreases in suitable habitat predicted under future climate change scenarios. Relatively little is understood about the ecophysiology of Joshua trees across their range, including the extent to which populations are locally adapted or phenotypically plastic to environmental stress.Plants in our common gardens showed evidence of Crassulacean acid metabolism photosynthesis (CAM) in a pilot experiment, despite no prior report of this photosynthetic pathway in these species. We further studied the variation and strength of CAM within a single common garden, measuring seedlings representing populations across the range of the two species.A combination of physiology and transcriptomic data showed low levels of CAM that varied across populations but were unrelated to home environmental conditions. Gene expression confirmed CAM activity and further suggested differences in carbon and nitrogen metabolism betweenY. brevifoliaandY. jaegeriana.Together the results suggest greater physiological diversity between these species than initially expected, particularly at the seedling stage, with implications for future survival of Joshua trees under a warming climate. 
    more » « less
  2. Abstract Species distribution models predict shifts in forest habitat in response to warming temperatures associated with climate change, yet tree migration rates lag climate change, leading to misalignment of current species assemblages with future climate conditions. Forest adaptation strategies have been proposed to deliberately adjust species composition by planting climate‐suitable species. Practical evaluations of adaptation plantings are limited, especially in the context of ecological memory or extreme climate events.In this study, we examined the 3‐year survival and growth response of future climate‐adapted seedling transplants within operational‐scale silvicultural trials across temperate forests in the northeastern US. Nine species were selected for evaluation based on projected future importance under climate change and potential functional redundancy with species currently found in these ecosystems. We investigated how adaptation planting type (‘population enrichment’ vs. ‘assisted range expansion’) and local site conditions reinforce interference interactions with existing vegetation at filtering adaptation strategies focused on transitioning forest composition.Our results show the performance of seedling transplants is based on species (e.g. functional attributes and size), the strength of local competition (e.g. ecological memory) and adaptation planting type, a proxy for source distance. These findings were consistent across regional forests but modified by site‐specific conditions such as browse pressure and extreme climate events, namely drought and spring frost events.Synthesis and applications. Our results highlight that managing forests for shifts in future composition represents a promising adaptation strategy for incorporating new species and functional traits into contemporary forests. Yet, important barriers remain for the establishment of future climate‐adapted forests that will most likely require management intervention. Nonetheless, the broader applicability of our findings demonstrates the potential for adaptation plantings to serve as strategic source nodes for the establishment of future climate‐adapted species across functionally connected landscapes. 
    more » « less
  3. Abstract Predicting species' range shifts under future climate is a central goal of conservation ecology. Studying populations within and beyond multiple species' current ranges can help identify whether demographic responses to climate change exhibit directionality, indicative of range shifts, and whether responses are uniform across a suite of species.We quantified the demographic responses of six native perennial prairie species planted within and, for two species, beyond their northern range limits to a 3‐year experimental manipulation of temperature and precipitation at three sites spanning a latitudinal climate gradient in the Pacific Northwest, USA. We estimated population growth rates (λ) using integral projection models and tested for opposing responses to climate in different demographic vital rates (demographic compensation).Where species successfully established reproductive populations, warming negatively affectedλat sites within species' current ranges. Contrarily, warming and drought positively affectedλfor the two species planted beyond their northern range limits. Most species failed to establish a reproductive population at one or more sites within their current ranges, due to extremely low germination and seedling survival. We found little evidence of demographic compensation buffering populations to the climate treatments.Synthesis. These results support predictions across a suite of species that ranges will need to shift with climate change as populations within current ranges become increasingly vulnerable to decline. Species capable of dispersing beyond their leading edges may be more likely to persist, as our evidence suggests that projected changes in climate may benefit such populations. If species are unable to disperse to new habitat on their own, assisted migration may need to be considered to prevent the widespread loss of vulnerable species. 
    more » « less
  4. Abstract Ecologically relevant symbioses are widespread in terrestrial arthropods but based on recent findings these specialized interactions are likely to be especially vulnerable to climate warming. Importantly, empirical data and climate models indicate that warming is occurring asynchronously, with night‐time temperatures increasing faster than daytime temperatures. Daytime (DTW) and night‐time warming (NTW) may impact ectothermic animals and their interactions differently as DTW results in greater daily temperature variation and moves organisms nearer to their thermal limits, while NTW avoids thermal limits and may relieve constraints of cooler night‐time temperatures; a nuance that has largely been ignored in the literature.In laboratory experiments, we investigated how the timing of warming influences a widespread defensive mutualism involving the pea aphidAcyrthosiphon pisum, and its heritable symbiont,Hamiltonella defensa, which protects against an important natural enemy, the parasitic waspAphidius ervi.Three aphid sublines were experimentally created from single aphid genotype susceptible toA. ervi: one line infected with a highly protectiveH. defensastrain, one infected with a moderately protective strain and one without any facultative symbiont. We examined aphid fitness in the presence and absence of parasitoids and when exposed to an average 2.5°C increase occurring across three warming scenarios (night‐time vs. daytime vs. uniform) relative to no‐warming controls.An increase of 2.5°C, as predicted to occur by the IPCC before 2100, was sufficient to disable the aphid defensive mutualism regardless of the timing of warming; a surprising result given that the daily maxima for control and NTW scenarios were identical. We also found that warming negatively impacted (a) symbiont‐mediated interactions between host and parasitoid more than symbiont‐free ones; (b) species interactions (host–parasitoid) more than each participant independently and (c) aphids more than parasitoids even though higher trophic levels are generally predicted to be more affected by warming.Here we show that 2.5°C warming, regardless of timing, negatively impacted a common microbe‐mediated defensive mutualism. While this was a laboratory‐based study, results suggest that temperature increases predicted in the near‐term may disrupt the many ecological symbioses present in terrestrial ecosystems. 
    more » « less
  5. Abstract Climate models predict at least another 1.5°C warming in the next 75 years. This warming drives increased atmospheric drying and a global increase in the severity and duration of ecological drought. Vegetation has the capacity to reduce microclimate temperatures and atmospheric aridity.All species of plants create shade, move water, evapotranspire, humidify the air around them, and affect the temperature and vapour pressure deficit of the environment. Vegetation can thus act as a nature‐based solution to warming and atmospheric drying.These microclimate modifications likely depend on the traits, functional groups and diversity of the plant community. Vegetative feedbacks on microclimate are strong enough to buffer some plants against the negative impacts of warming and drying (e.g. facilitation).Synthesis: Here we present, for the first time, a trait‐based framework that can be applied across study systems for assessing microclimate temperature and humidity under vegetation. This framework includes multiple new hypotheses for future work in this area. We emphasize that a systematic examination of trait–microclimate relationships will enable us to use vegetation as a nature‐based solution to warming and atmospheric drying in a changing climate. 
    more » « less