skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 11, 2026

Title: Zero-Shot Monocular Scene Flow Estimation in the Wild
Large models have shown generalization across datasets for many low-level vision tasks, like depth estimation, but no such general models exist for scene flow. Even though scene flow prediction has wide potential, its practical use is limited because of the lack of generalization of current predictive models. We identify three key challenges and propose solutions for each. First, we create a method that jointly estimates geometry and motion for accurate prediction. Second, we alleviate scene flow data scarcity with a data recipe that affords us 1M annotated training samples across diverse synthetic scenes. Third, we evaluate different parameterizations for scene flow prediction and adopt a natural and effective parameterization. Our model outperforms existing methods as well as baselines built on large-scale models in terms of 3D end-point error, and shows zero-shot generalization to the casually captured videos from DAVIS and the robotic manipulation scenes from RoboTAP. Overall, our approach makes scene flow prediction more practical in-the-wild. Website: https://research.nvidia.com/labs/lpr/zero msf/  more » « less
Award ID(s):
2144956
PAR ID:
10580897
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE/CVF Computer Vision and Pattern Recognition
Date Published:
Format(s):
Medium: X
Location:
Nashville, TN
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We propose a novel end-to-end deep scene flow model, called PointPWC-Net, that directly processes 3D point cloud scenes with large motions in a coarse-to-fine fashion. Flow computed at the coarse level is upsampled and warped to a finer level, enabling the algorithm to accommodate for large motion without a prohibitive search space. We introduce novel cost volume, upsampling, and warping layers to efficiently handle 3D point cloud data. Unlike traditional cost volumes that require exhaustively computing all the cost values on a high-dimensional grid, our point-based formulation discretizes the cost volume onto input 3D points, and a PointConv operation efficiently computes convolutions on the cost volume. Experiment results on FlyingThings3D and KITTI outperform the state-of-the-art by a large margin. We further explore novel self-supervised losses to train our model and achieve comparable results to state-of-the-art trained with supervised loss. Without any fine-tuning, our method also shows great generalization ability on the KITTI Scene Flow 2015 dataset, outperforming all previous methods. The code is released at https://github.com/DylanWusee/PointPWC. 
    more » « less
  2. null (Ed.)
    We present a passive non-line-of-sight method that infers the number of people or activity of a person from the observation of a blank wall in an unknown room. Our technique analyzes complex imperceptible changes in indirect illumination in a video of the wall to reveal a signal that is correlated with motion in the hidden part of a scene. We use this signal to classify between zero, one, or two moving people, or the activity of a person in the hidden scene. We train two convolutional neural networks using data collected from 20 different scenes, and achieve an accuracy of 94% for both tasks in unseen test environments and real-time online settings. Unlike other passive non-line-of-sight methods, the technique does not rely on known occluders or controllable light sources, and generalizes to unknown rooms with no recalibration. We analyze the generalization and robustness of our method with both real and synthetic data, and study the effect of the scene parameters on the signal quality. 
    more » « less
  3. Internet image collections containing photos captured by crowds of photographers show promise for enabling digital exploration of large‐scale tourist landmarks. However, prior works focus primarily on geometric reconstruction and visualization, neglecting the key role of language in providing a semantic interface for navigation and fine‐grained understanding. In more constrained 3D domains, recent methods have leveraged modern vision‐and‐language models as a strong prior of 2D visual semantics. While these models display an excellent understanding of broad visual semantics, they struggle with unconstrained photo collections depicting such tourist landmarks, as they lack expert knowledge of the architectural domain and fail to exploit the geometric consistency of images capturing multiple views of such scenes. In this work, we present a localization system that connects neural representations of scenes depicting large‐scale landmarks with text describing a semantic region within the scene, by harnessing the power of SOTA vision‐and‐language models with adaptations for understanding landmark scene semantics. To bolster such models with fine‐grained knowledge, we leverage large‐scale Internet data containing images of similar landmarks along with weakly‐related textual information. Our approach is built upon the premise that images physically grounded in space can provide a powerful supervision signal for localizing new concepts, whose semantics may be unlocked from Internet textual metadata with large language models. We use correspondences between views of scenes to bootstrap spatial understanding of these semantics, providing guidance for 3D‐compatible segmentation that ultimately lifts to a volumetric scene representation. To evaluate our method, we present a new benchmark dataset containing large‐scale scenes with ground‐truth segmentations for multiple semantic concepts. Our results show that HaLo‐NeRF can accurately localize a variety of semantic concepts related to architectural landmarks, surpassing the results of other 3D models as well as strong 2D segmentation baselines. Our code and data are publicly available at https://tau‐vailab.github.io/HaLo‐NeRF/ 
    more » « less
  4. Scene understanding is a key technical challenge within the autonomous driving domain. It requires a deep semantic understanding of the entities and relations found within complex physical and social environments that is both accurate and complete. In practice, this can be accomplished by representing entities in a scene and their relations as a knowledge graph (KG). This scene knowledge graph may then be utilized for the task of entity prediction, leading to improved scene understanding. In this paper, we will define and formalize this problem as Knowledge-based Entity Prediction (KEP). KEP aims to improve scene understanding by predicting potentially unrecognized entities by leveraging heterogeneous, high-level semantic knowledge of driving scenes. An innovative neuro-symbolic solution for KEP is presented, based on knowledge-infused learning, which 1) introduces a dataset agnostic ontology to describe driving scenes, 2) uses an expressive, holistic representation of scenes with knowledge graphs, and 3) proposes an effective, non-standard mapping of the KEP problem to the problem of link prediction (LP) using knowledge-graph embeddings (KGE). Using real, complex and high-quality data from urban driving scenes, we demonstrate its effectiveness by showing that the missing entities may be predicted with high precision (0.87 Hits@1) while significantly outperforming the non-semantic/rule-based baselines. 
    more » « less
  5. We propose the Large View Synthesis Model (LVSM), a novel transformer-based approach for scalable and generalizable novel view synthesis from sparse-view inputs. We introduce two architectures: (1) an encoder-decoder LVSM, which encodes input image tokens into a fixed number of 1D latent tokens, functioning as a fully learned scene representation, and decodes novel-view images from them; and (2) a decoder-only LVSM, which directly maps input images to novel-view outputs, completely eliminating intermediate scene representations. Both models bypass the 3D inductive biases used in previous methods—from 3D representations (e.g., NeRF, 3DGS) to network designs (e.g., epipolar projections, plane sweeps)—addressing novel view synthesis with a fully data-driven approach. While the encoder-decoder model offers faster inference due to its independent latent representation, the decoder-only LVSM achieves superior quality, scalability, and zero-shot generalization, outperforming previous state-of-the-art methods by 1.5 to 3.5 dB PSNR. Comprehensive evaluations across multiple datasets demonstrate that both LVSM variants achieve state-of-the-art novel view synthesis quality. Notably, our models surpass all previous methods even with reduced computational resources (1-2 GPUs). 
    more » « less