Abstract Induced seismicity and surface deformation are common observable manifestations of the geomechanical effect of reservoir operations whether related to geothermal energy production, gas extraction or the storage of carbon dioxide, gas, air or hydrogen. Modelling tools to quantitatively predict surface deformation and seismicity based on operation data could thus help manage such reservoirs. To that effect, we present an integrated and modular modelling framework which combines reservoir modelling, geomechanical modelling and earthquake forecasting. To allow effective computational cost, we assume vertical flow equilibrium, semi-analytical Green's functions to calculate surface deformation and poroelastic stresses and a simple earthquake nucleation model based on Coulomb stress changes. We use the test case of the Groningen gas field in the Netherlands to validate the modelling framework and assess its usefulness for reservoir management. For this application, given the relative simplicity of this sandstone reservoir, we assume homogeneous porosity and permeability and single-phase flow. The model fits the measured pressure well, yielding a root mean square error (RMSE) of 0.95 MPa, and the seismicity observations as well. The pressure residuals show, however, a systematic increase with time that probably reflects groundwater ingression into the depleted reservoir. The interaction with groundwater could be accounted for by implementing a multiphase-flow vertical flow equilibrium (VFE) model. This is probably the major factor that limits the general applicability of the modelling framework. Nevertheless, he modelled subsidence and seismicity fit very well the historical observations in the case of the Groningen gas field.
more »
« less
This content will become publicly available on March 20, 2026
Geodetic Monitoring of Elastic and Inelastic Deformation in Compacting Reservoirs Due To Subsurface Operations
Abstract A variety of geo‐energy operations involve extraction or injections of fluids, including hydrocarbon production or storage, hydrogen storage, CO2sequestration, and geothermal energy production. The surface deformation resulting from such operations can be a source of information on reservoir geomechanical properties as we show in this study. We analyze the time‐dependent surface deformation in the Groningen region in northeastern Netherlands using a comprehensive geodetic data set, which includes InSAR (Radarsat2, TerraSAR‐X, Sentinel‐1), GNSS, and optical leveling spanning several decades. We resort to an Independent Component Analysis (ICA) to isolate deformation signals of various origins. The signals related to gas production from the Groningen gas field and from seasonal storage at Norg Underground Gas Storage are clearly revealed. Surface deformation associated to the Groningen reservoir show decadal subsidence, with spatially variable subsidence rates dictated by local compressibility. The ICA reveals distinct seasonal fluctuations at Norg, closely mirroring the variations of gas storage. By comparing the observed long‐term subsidence within the Groningen reservoir and seasonal oscillations at Norg from a linear poroelastic compaction model, we quantify the fraction of inelastic deformation of the reservoir in space and time and constrain the reservoir compressibility. In Groningen, increased compressibility indicates inelastic compaction that has built over time and might account for as much as 20% of the total compaction cumulated until 2021, while Norg shows no signs of inelastic deformation and a constant compressibility. This study provides a methodology to monitor and calibrate models of the subsurface deformation induced by geo‐energy operations or aquifer management.
more »
« less
- Award ID(s):
- 1822214
- PAR ID:
- 10581447
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 130
- Issue:
- 3
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As much as 3.05 m of land subsidence was observed in 1979 in the Houston-Galveston region as a result primarily of inelastic compaction of aquitards in the Chicot and Evangeline aquifers between 1937 and 1979. The preconsolidation pressure heads for aquitards within these two aquifers were continuously updated in response to lowering groundwater levels, which in turn was caused by continuously increasing groundwater withdrawal rates from 0.57 to 4.28 million m3/day. This land subsidence occurred without any management of changes in groundwater levels. However, the management of recovering groundwater levels from 1979 to 2000 successfully decreased inelastic compaction from about 40 mm/yr in the early 1980s to zero around 2000 through decreasing groundwater withdrawal rates from 4.3 to 3.0 million m3/day. The inelastic consolidation that had existed for about 63 years roughly from 1937 to 2000 caused a land subsidence hazard in this region. Some rebounding of the land surface was achieved from groundwater level recovering management. It is found in this paper that subsidence of 0.08 to 8.49 mm/yr owing to a pseudo-constant secondary consolidation rate emerged or tended to emerge at 13 borehole extensometer station locations while the groundwater levels in the two aquifers were being managed. It is considered to remain stable in trend since 2000. The subsidence due to the secondary consolidation is beyond the control of any groundwater level change management schemes because it is caused by geo-historical overburden pressure on the two aquifers. The compaction measurements collected from the 13 extensometers since 1971 not only successfully corroborate the need for groundwater level change management in controlling land subsidence but also yield the first empirical findings of the occurrence of secondary consolidation subsidence in the Quaternary and Tertiary aquifer systems in the Houston-Galveston region.more » « less
-
Abstract Gas extraction from the Groningen gas reservoir, located in the northeastern Netherlands, has led to a drop in pressure and drove compaction and induced seismicity. Stress-based models have shown success in forecasting induced seismicity in this particular context and elsewhere, but they generally assume that earthquake clustering is negligible. To assess earthquake clustering at Groningen, we generate an enhanced seismicity catalog using a deep-learning-based workflow. We identify and locate 1369 events between 2015 and 2022, including 660 newly detected events not previously identified by the standard catalog from the Royal Netherlands Meteorological Institute. Using the nearest-neighbor distance approach, we find that 72% of events are background independent events, whereas the remaining 28% belong to clusters. The 55% of the clustered events are swarm-like, whereas the rest are aftershock-like. Among the swarms include five newly identified sequences propagating at high velocities between 3 and 50 km/day along directions that do not follow mapped faults or existing structures and frequently exhibit a sharp turn in the middle of the sequence. The swarms occurred around the time of the maximum compaction rate between November 2016 and May 2017 in the Zechstein layer, above the anhydrite caprock, and well-above the directly induced earthquakes that occur within the reservoir and caprock. We suggest that these swarms are related to the aseismic deformation within the salt formation rather than fluids. This study suggests that the propagating swarms do not always signify fluid migration.more » « less
-
Abstract Reservoir operations for gas extraction, fluid disposal, carbon dioxide storage, or geothermal energy production are capable of inducing seismicity. Modeling tools exist for seismicity forecasting using operational data, but the computational costs and uncertainty quantification (UQ) pose challenges. We address this issue in the context of seismicity induced by gas production from the Groningen gas field using an integrated modeling framework, which combines reservoir modeling, geomechanical modeling, and stress-based earthquake forecasting. The framework is computationally efficient thanks to a 2D finite-element reservoir model, which assumes vertical flow equilibrium, and the use of semianalytical solutions to calculate poroelastic stress changes and predict seismicity rate. The earthquake nucleation model is based on rate-and-state friction and allows for an initial strength excess so that the faults are not assumed initially critically stressed. We estimate uncertainties in the predicted number of earthquakes and magnitudes. To reduce the computational costs, we assume that the stress model is true, but our UQ algorithm is general enough that the uncertainties in reservoir and stress models could be incorporated. We explore how the selection of either a Poisson or a Gaussian likelihood influences the forecast. We also use a synthetic catalog to estimate the improved forecasting performance that would have resulted from a better seismicity detection threshold. Finally, we use tapered and nontapered Gutenberg–Richter distributions to evaluate the most probable maximum magnitude over time and account for uncertainties in its estimation. Although we did not formally account for uncertainties in the stress model, we tested several alternative stress models, and found negligible impact on the predicted temporal evolution of seismicity and forecast uncertainties. Our study shows that the proposed approach yields realistic estimates of the uncertainties of temporal seismicity and is applicable for operational forecasting or induced seismicity monitoring. It can also be used in probabilistic traffic light systems.more » « less
-
Abstract Carbonate sediments play a prominent role on the global geological stage as they store more than $$60\%$$ 60 % of world’s oil and $$40\%$$ 40 % of world’s gas reserves. Prediction of the deformation and failure of porous carbonates is, therefore, essential to minimise reservoir compaction, fault reactivation, or wellbore instability. This relies on our understanding of the mechanisms underlying the observed inelastic response to fluid injection or deviatoric stress perturbations. Understanding the impact of deformation/failure on the hydraulic properties of the rock is also essential as injection/production rates will be affected. In this work, we present new experimental results from triaxial deformation experiments carried out to elucidate the behaviour of a porous limestone reservoir analogue (Savonnières limestone). Drained triaxial and isotropic compression tests were conducted at five different confining pressures in dry and water-saturated conditions. Stress–strain data and X-ray tomography images of the rock indicate two distinct types of deformation and failure regimes: at low confinement (10 MPa) brittle failure in the form of dilatant shear banding was dominant; whereas at higher confinement compaction bands orthogonal to the maximum principal stress formed. In addition to the pore pressure effect, the presence of water in the pore space significantly weakened the rock, thereby shrinking the yield envelope compared to the dry conditions, and shifted the brittle–ductile transition to lower effective confining pressures (from 35 MPa to 29 MPa). Finally, permeability measurements during deformation show a reduction of an order of magnitude in the ductile regime due to the formation of the compaction bands. These results highlight the importance of considering the role of the saturating fluid in the brittle–ductile response of porous rocks and elucidate some of the microstructural processes taking place during this transition.more » « less
An official website of the United States government
