skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Novel viruses in the families Iflaviridae and Partitiviridae associated with the common eastern firefly Photinus pyralis
Fireflies are iconic insects that are under threat from environmental change. Knowledge of the viral diversity associated with natural firefly populations is important to our understanding of the basic biology of these insects and could be relevant to firefly conservation. We performed metatranscriptome sequencing of the Common Eastern Firefly (Photinus pyralis) and assembled genomes for two new species of virus in the families Iflaviridae and Partitiviridae. We surveyed multiple individuals for these viruses using PCR, and we showed that both viruses are found at intermediate frequences in a natural population.  more » « less
Award ID(s):
2305653
PAR ID:
10581516
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
microPublication Biology
Date Published:
Journal Name:
microPublication biology
Volume:
2025
ISSN:
2578-9430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Firefly flashes are well-known visual signals used by these insects to find, identify, and choose mates. However, many firefly species have lost the ability to produce light as adults. These “unlighted” species generally lack developed adult light organs, are diurnal rather than nocturnal, and are believed to use volatile pheromones acting over a distance to locate mates. While cuticular hydrocarbons, which may function in mate recognition at close range, have been examined for a handful of the over 2000 extant firefly species, no volatile pheromone has ever been identified. In this study, using coupled gas chromatography - electroantennographic detection, we detected a single female-emitted compound that elicited antennal responses from wild-caught male winter fireflies,Photinus corruscus. The compound was identified as (1S)-exo-3-hydroxycamphor (hydroxycamphor). In field trials at two sites across the species’ eastern North American range, large numbers of maleP. corruscuswere attracted to synthesized hydroxycamphor, verifying its function as a volatile sex attractant pheromone. Males spent more time in contact with lures treated with synthesized hydroxycamphor than those treated with solvent only in laboratory two-choice assays. Further, using single sensillum recordings, we characterized a pheromone-sensitive odorant receptor neuron in a specific olfactory sensillum on maleP. corruscusantennae and demonstrated its sensitivity to hydroxycamphor. Thus, this study has identified the first volatile pheromone and its corresponding sensory neuron for any firefly species,and provides a tool for monitoringP. corruscuspopulations for conservation and further inquiry into the chemical and cellular bases for sexual communication among fireflies. 
    more » « less
  2. Abstract Knowledge of viral biodiversity within insects, particularly within ants, is extremely limited with only a few environmental viruses from invasive ant species identified to date. This study documents and explores the viral communities in ants. We comprehensively profile the metagenomes of a phylogenetically broad group of 35 ant species with varied ecological traits and report the discovery of 3710 novel and unique ant‐associated viral genomes. These previously unknown viruses discovered within this study constitute over 95% of all currently described ant viruses, significantly increasing our knowledge of the ant virosphere. The identified RNA and DNA viruses fill gaps in insect‐associated viral phylogenies and uncover evolutionary histories characterized by both frequent host switching and co‐divergence. Many ants also host diverse bacterial communities, and we discovered that approximately one‐third of these new ant‐associated viruses are bacteriophages. Two ecological categories, bacterial abundance in the host and habitat degradation are both correlated with ant viral diversity and help to structure viral communities within ants. These data demonstrate that the ant virosphere is remarkably diverse phylogenetically and genomically and provide a substantial foundation for studies in virus ecology and evolution within eukaryotes. We highlight the importance of studying insect‐associated viruses in natural ecosystems in order to more thoroughly and effectively understand host‐microbe evolutionary dynamics. 
    more » « less
  3. The insect virome is composed of a myriad of viruses. Both field populations and laboratory colonies of insects harbour diverse viruses, including viruses that infect the insect itself, viruses of microbes associated with the insect, and viruses associated with ingested materials. Metagenomics analysis for identification of virus-derived sequences has allowed for new appreciation of the extent and diversity of the insect virome. The complex interactions between insect viruses and host antiviral immune pathways (RNA interference and apoptosis), and between viruses and other members of the microbiome (e.g. Wolbachia) are becoming apparent. In this chapter, an overview of the diversity of viruses in insects and recent virus discovery research for specific insects and insect-derived cell lines is provided. The opportunities and challenges associated with the insect virome, including the potential impacts of viruses on both research and insect management programs are also addressed. 
    more » « less
  4. Glowing fireflies dancing in the dark are one of the most enchanting sights of a warm summer night. Their light signals are ‘love messages’ that help the insects find a mate – yet, they also warn a potential predator that these beetles have powerful chemical defenses. The light comes from a specialized organ of the firefly where a small molecule, luciferin, is broken down by the enzyme luciferase. Fireflies are an ancient group, with the common ancestor of the two main lineages originating over 100 million years ago. But fireflies are not the only insects that produce light: certain click beetles are also bioluminescent. Fireflies and click beetles are closely related, and they both use identical luciferin and similar luciferases to create light. This would suggest that bioluminescence was already present in the common ancestor of the two families. However, the specialized organs in which the chemical reactions take place are entirely different, which would indicate that the ability to produce light arose independently in each group. Here, Fallon, Lower et al. try to resolve this discrepancy and to find out how many times bioluminescence evolved in beetles. This required using cutting-edge DNA sequencing to carefully piece together the genomes of two species of fireflies (Photinus pyralis and Aquatica lateralis) and one species of click beetle (Ignelater luminosus). The genetic analysis revealed that, in all species, the genes for luciferases were very similar to the genetic sequences around them, which code for proteins that break down fat. This indicates that the ancestral luciferase arose from one of these metabolic genes getting duplicated, and then one of the copies evolving a new role. However, the genes for luciferase were very different between the fireflies and the click beetles. Further analyses suggested that bioluminescence evolved at least twice: once in an ancestor of fireflies, and once in the ancestor of the bioluminescent click beetles. More results came from the reconstituted genomes. For example, Fallon, Lower et al. identified the genes ‘turned on’ in the bioluminescent organ of the fireflies. This made it possible to list genes that may be involved in creating luciferin, and enable flies to grow brightly for long periods. In addition, the genetic information yielded sequences from bacteria that likely live inside firefly cells, and which may participate in the light-making process or the production of potent chemical defenses. Better genetic knowledge of beetle bioluminescence could bring new advances for both insects and humans. It may help researchers find and design better light-emitting molecules useful to track and quantify proteins of interest in a cell. Ultimately, it would allow a detailed understanding of firefly populations around the world, which could contribute to firefly ecotourism and help to protect these glowing insects from increasing environmental threats. 
    more » « less
  5. Abstract Although the type‐I interferon (IFN‐I) response is considered vertebrate‐specific, recent findings about the Intracellular Pathogen Response (IPR) in nematodeCaenorhabditis elegansindicate that there are similarities between these two transcriptional immunological programs. The IPR is induced during infection with natural intracellular fungal and viral pathogens of the intestine and promotes resistance against these pathogens. Similarly, the IFN‐I response is induced by viruses and other intracellular pathogens and promotes resistance against infection. Whether the IPR and the IFN‐I response evolved in a divergent or convergent manner is an unanswered and exciting question, which could be addressed by further studies of immunity against intracellular pathogens inC. elegansand other simple host organisms. Here we highlight similar roles played by RIG‐I‐like receptors, purine metabolism enzymes, proteotoxic stressors, and transcription factors to induce the IPR and IFN‐I response, as well as the similar consequences of these defense programs on organismal development. 
    more » « less