This paper studies a dynamic pricing problem under model misspecification. To characterize model misspecification, we adopt the ε-contamination model—the most fundamental model in robust statistics and machine learning. In particular, for a selling horizon of length T, the online ε-contamination model assumes that demands are realized according to a typical unknown demand function only for [Formula: see text] periods. For the rest of [Formula: see text] periods, an outlier purchase can happen with arbitrary demand functions. The challenges brought by the presence of outlier customers are mainly due to the fact that arrivals of outliers and their exhibited demand behaviors are completely arbitrary, therefore calling for robust estimation and exploration strategies that can handle any outlier arrival and demand patterns. We first consider unconstrained dynamic pricing without any inventory constraint. In this case, we adopt the Follow-the-Regularized-Leader algorithm to hedge against outlier purchase behavior. Then, we introduce inventory constraints. When the inventory is insufficient, we study a robust bisection-search algorithm to identify the clearance price—that is, the price at which the initial inventory is expected to clear at the end of T periods. Finally, we study the general dynamic pricing case, where a retailer has no clue whether the inventory is sufficient or not. In this case, we design a meta-algorithm that combines the previous two policies. All algorithms are fully adaptive, without requiring prior knowledge of the outlier proportion parameter ε. Simulation study shows that our policy outperforms existing policies in the literature.
more »
« less
This content will become publicly available on March 1, 2026
Offline Feature-Based Pricing Under Censored Demand: A Causal Inference Approach
Problem definition: We study a feature-based pricing problem with demand censoring in an offline, data-driven setting. In this problem, a firm is endowed with a finite amount of inventory and faces a random demand that is dependent on the offered price and the features (from products, customers, or both). Any unsatisfied demand that exceeds the inventory level is lost and unobservable. The firm does not know the demand function but has access to an offline data set consisting of quadruplets of historical features, inventory, price, and potentially censored sales quantity. Our objective is to use the offline data set to find the optimal feature-based pricing rule so as to maximize the expected profit. Methodology/results: Through the lens of causal inference, we propose a novel data-driven algorithm that is motivated by survival analysis and doubly robust estimation. We derive a finite sample regret bound to justify the proposed offline learning algorithm and prove its robustness. Numerical experiments demonstrate the robust performance of our proposed algorithm in accurately estimating optimal prices on both training and testing data. Managerial implications: The work provides practitioners with an innovative modeling and algorithmic framework for the feature-based pricing problem with demand censoring through the lens of causal inference. Our numerical experiments underscore the value of considering demand censoring in the context of feature-based pricing. Funding: The research of E. Fang is partially supported by the National Science Foundation [Grants NSF DMS-2346292, NSF DMS-2434666] and the Whitehead Scholarship. The research of C. Shi is partially supported by the Amazon Research Award. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2024.1061 .
more »
« less
- PAR ID:
- 10581612
- Publisher / Repository:
- INFORMS
- Date Published:
- Journal Name:
- Manufacturing & Service Operations Management
- Volume:
- 27
- Issue:
- 2
- ISSN:
- 1523-4614
- Page Range / eLocation ID:
- 535 to 553
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider the periodic review dynamic pricing and inventory control problem with fixed ordering cost. Demand is random and price dependent, and unsatisfied demand is backlogged. With complete demand information, the celebrated [Formula: see text] policy is proved to be optimal, where s and S are the reorder point and order-up-to level for ordering strategy, and [Formula: see text], a function of on-hand inventory level, characterizes the pricing strategy. In this paper, we consider incomplete demand information and develop online learning algorithms whose average profit approaches that of the optimal [Formula: see text] with a tight [Formula: see text] regret rate. A number of salient features differentiate our work from the existing online learning researches in the operations management (OM) literature. First, computing the optimal [Formula: see text] policy requires solving a dynamic programming (DP) over multiple periods involving unknown quantities, which is different from the majority of learning problems in OM that only require solving single-period optimization questions. It is hence challenging to establish stability results through DP recursions, which we accomplish by proving uniform convergence of the profit-to-go function. The necessity of analyzing action-dependent state transition over multiple periods resembles the reinforcement learning question, considerably more difficult than existing bandit learning algorithms. Second, the pricing function [Formula: see text] is of infinite dimension, and approaching it is much more challenging than approaching a finite number of parameters as seen in existing researches. The demand-price relationship is estimated based on upper confidence bound, but the confidence interval cannot be explicitly calculated due to the complexity of the DP recursion. Finally, because of the multiperiod nature of [Formula: see text] policies the actual distribution of the randomness in demand plays an important role in determining the optimal pricing strategy [Formula: see text], which is unknown to the learner a priori. In this paper, the demand randomness is approximated by an empirical distribution constructed using dependent samples, and a novel Wasserstein metric-based argument is employed to prove convergence of the empirical distribution. This paper was accepted by J. George Shanthikumar, big data analytics.more » « less
-
In the context of subscription-based services, many technologies improve over time, and service providers can provide increasingly powerful service upgrades to their customers but at a launching cost and the expense of the sales of existing products. We propose a model of technology upgrades and characterize the optimal pricing and timing of technology introductions for a service provider who price-discriminates among customers based on their upgrade experience in the face of customers who are averse to switching to improved offerings. We first characterize optimal discriminatory pricing for the infinite horizon pricing problem with fixed introduction times. We reduce the optimal pricing problem to a tractable optimization problem and propose an efficient algorithm for solving it. Our algorithm computes optimal discriminatory prices within a fraction of a second even for large problem instances. We then show that periodic introduction times, combined with optimal pricing, enjoy optimality guarantees. In particular, we first show that, as long as the introduction intervals are constrained to be nonincreasing, it is optimal to have periodic introductions after an initial warm-up phase. When allowing general introduction intervals, we show that periodic introduction intervals after some time are optimal in a more restricted sense. Numerical experiments suggest that it is generally optimal to have periodic introductions after an initial warm-up phase. Finally, we focus on a setting in which the firm does not price-discriminate based on customers’ experience. We show both analytically and numerically that in the nondiscriminatory setting, a simple policy of Myerson (i.e., myopic) pricing and periodic introductions enjoys good performance guarantees. Funding: This material is based upon work supported by INSEAD and University Pierre et Marie Curie [Grant ELICIT], as well as by the National Science Foundation [Grant 2110707]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2022.2364 .more » « less
-
We consider a fundamental pricing model in which a fixed number of units of a reusable resource are used to serve customers. Customers arrive to the system according to a stochastic process and, upon arrival, decide whether to purchase the service, depending on their willingness to pay and the current price. The service time during which the resource is used by the customer is stochastic, and the firm may incur a service cost. This model represents various markets for reusable resources, such as cloud computing, shared vehicles, rotable parts, and hotel rooms. In the present paper, we analyze this pricing problem when the firm attempts to maximize a weighted combination of three central metrics: profit, market share, and service level. Under Poisson arrivals, exponential service times, and standard assumptions on the willingness-to-pay distribution, we establish a series of results that characterize the performance of static pricing in such environments. In particular, although an optimal policy is fully dynamic in such a context, we prove that a static pricing policy simultaneously guarantees 78.9% of the profit, market share, and service level from the optimal policy. Notably, this result holds for any service rate and number of units the firm operates. Our proof technique relies on a judicious construction of a static price that is derived directly from the optimal dynamic pricing policy. In the special case in which there are two units and the induced demand is linear, we also prove that the static policy guarantees 95.5% of the profit from the optimal policy. Our numerical findings on a large test bed of instances suggest that the latter result is quite indicative of the profit obtained by the static pricing policy across all parameters.more » « less
-
In this paper, we consider a personalized assortment planning problem under inventory constraints, where each arriving customer type is defined by a primary item of interest. As long as that item is in stock, the customer adds it to the shopping cart, at which point the retailer can recommend to the customer an assortment of add-ons to go along with the primary item. This problem is motivated by the new “recommendation at checkout” systems that have been deployed at many online retailers, and it also serves as a framework that unifies many existing problems in online algorithms (e.g., personalized assortment planning, single-leg booking, and online matching with stochastic rewards). In our problem, add-on recommendation opportunities are eluded when primary items go out of stock, which poses additional challenges for the development of an online policy. We overcome these challenges by introducing the notion of an inventory protection level in expectation and derive an algorithm with a 1/4-competitive ratio guarantee under adversarial arrivals. Funding: This work was supported by the Adobe Data Science Research Award and the Alibaba Innovation Research Award. L. Xin was partly supported by the National Science Foundation (NSF) [Award CMMI-1635160], X. Chen was supported by the NSF [CAREER Award IIS-1845444]. W. Ma and D. Simchi-Levi were supported by the Accenture and MIT Alliance in Business Analytics.more » « less