Problem definition: We study a feature-based pricing problem with demand censoring in an offline, data-driven setting. In this problem, a firm is endowed with a finite amount of inventory and faces a random demand that is dependent on the offered price and the features (from products, customers, or both). Any unsatisfied demand that exceeds the inventory level is lost and unobservable. The firm does not know the demand function but has access to an offline data set consisting of quadruplets of historical features, inventory, price, and potentially censored sales quantity. Our objective is to use the offline data set to find the optimal feature-based pricing rule so as to maximize the expected profit. Methodology/results: Through the lens of causal inference, we propose a novel data-driven algorithm that is motivated by survival analysis and doubly robust estimation. We derive a finite sample regret bound to justify the proposed offline learning algorithm and prove its robustness. Numerical experiments demonstrate the robust performance of our proposed algorithm in accurately estimating optimal prices on both training and testing data. Managerial implications: The work provides practitioners with an innovative modeling and algorithmic framework for the feature-based pricing problem with demand censoring through the lens of causal inference. Our numerical experiments underscore the value of considering demand censoring in the context of feature-based pricing. Funding: The research of E. Fang is partially supported by the National Science Foundation [Grants NSF DMS-2346292, NSF DMS-2434666] and the Whitehead Scholarship. The research of C. Shi is partially supported by the Amazon Research Award. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2024.1061 .
more »
« less
Private Optimal Inventory Policy Learning for Feature-Based Newsvendor with Unknown Demand
The data-driven newsvendor problem with features has recently emerged as a significant area of research, driven by the proliferation of data across various sectors such as retail, supply chains, e-commerce, and healthcare. Given the sensitive nature of customer or organizational data often used in feature-based analysis, it is crucial to ensure individual privacy to uphold trust and confidence. Despite its importance, privacy preservation in the context of inventory planning remains unexplored. A key challenge is the nonsmoothness of the newsvendor loss function, which sets it apart from existing work on privacy-preserving algorithms in other settings. This paper introduces a novel approach to estimating a privacy-preserving optimal inventory policy within the f-differential privacy framework, an extension of the classical [Formula: see text]-differential privacy with several appealing properties. We develop a clipped noisy gradient descent algorithm based on convolution smoothing for optimal inventory estimation to simultaneously address three main challenges: (i) unknown demand distribution and nonsmooth loss function, (ii) provable privacy guarantees for individual-level data, and (iii) desirable statistical precision. We derive finite-sample high-probability bounds for optimal policy parameter estimation and regret analysis. By leveraging the structure of the newsvendor problem, we attain a faster excess population risk bound compared with that obtained from an indiscriminate application of existing results for general nonsmooth convex loss. Our bound aligns with that for strongly convex and smooth loss function. Our numerical experiments demonstrate that the proposed new method can achieve desirable privacy protection with a marginal increase in cost. This paper was accepted by J. George Shanthikumar, data science. Funding: This work was supported by the National Science Foundation [Grants DMS-2113409 and DMS 2401268 to W.-X. Zhou, and FRGMS-1952373 to L. Wang]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.01268 .
more »
« less
- Award ID(s):
- 2401268
- PAR ID:
- 10612057
- Publisher / Repository:
- https://pubsonline.informs.org/journal/mnsc
- Date Published:
- Journal Name:
- Management Science
- ISSN:
- 0025-1909
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The prevalence of e-commerce has made customers’ detailed personal information readily accessible to retailers, and this information has been widely used in pricing decisions. When using personalized information, the question of how to protect the privacy of such information becomes a critical issue in practice. In this paper, we consider a dynamic pricing problem over T time periods with an unknown demand function of posted price and personalized information. At each time t, the retailer observes an arriving customer’s personal information and offers a price. The customer then makes the purchase decision, which will be utilized by the retailer to learn the underlying demand function. There is potentially a serious privacy concern during this process: a third-party agent might infer the personalized information and purchase decisions from price changes in the pricing system. Using the fundamental framework of differential privacy from computer science, we develop a privacy-preserving dynamic pricing policy, which tries to maximize the retailer revenue while avoiding information leakage of individual customer’s information and purchasing decisions. To this end, we first introduce a notion of anticipating [Formula: see text]-differential privacy that is tailored to the dynamic pricing problem. Our policy achieves both the privacy guarantee and the performance guarantee in terms of regret. Roughly speaking, for d-dimensional personalized information, our algorithm achieves the expected regret at the order of [Formula: see text] when the customers’ information is adversarially chosen. For stochastic personalized information, the regret bound can be further improved to [Formula: see text]. This paper was accepted by J. George Shanthikumar, big data analytics.more » « less
-
Abstract The protection of private information is of vital importance in data-driven research, business and government. The conflict between privacy and utility has triggered intensive research in the computer science and statistics communities, who have developed a variety of methods for privacy-preserving data release. Among the main concepts that have emerged are anonymity and differential privacy. Today, another solution is gaining traction, synthetic data. However, the road to privacy is paved with NP-hard problems. In this paper, we focus on the NP-hard challenge to develop a synthetic data generation method that is computationally efficient, comes with provable privacy guarantees and rigorously quantifies data utility. We solve a relaxed version of this problem by studying a fundamental, but a first glance completely unrelated, problem in probability concerning the concept of covariance loss. Namely, we find a nearly optimal and constructive answer to the question how much information is lost when we take conditional expectation. Surprisingly, this excursion into theoretical probability produces mathematical techniques that allow us to derive constructive, approximately optimal solutions to difficult applied problems concerning microaggregation, privacy and synthetic data.more » « less
-
In this paper, we propose AdaBB, an adaptive gradient method based on the Barzilai-Borwein stepsize. The algorithm is line-search-free and parameter-free, and it essentially provides a convergent variant of the Barzilai-Borwein method for general convex optimization problems. We analyze the ergodic convergence of the objective function value and the convergence of the iterates for solving general convex optimization problems. Compared with existing works along this line of research, our algorithm gives the best lower bounds on the stepsize and the average of the stepsizes. Furthermore, we present extensions of the proposed algorithm for solving locally strongly convex and composite convex optimization problems where the objective function is the sum of a smooth function and a nonsmooth function. In the case of local strong convexity, we achieve linear convergence. Our numerical results also demonstrate very promising potential of the proposed algorithms on some representative examples. Funding: S. Ma is supported by the National Science Foundation [Grants DMS-2243650, CCF-2308597, CCF-2311275, and ECCS-2326591] and a startup fund from Rice University. J. Yang is supported by the National Natural Science Foundation of China [Grants 12431011 and 12371301] and the Natural Science Foundation for Distinguished Young Scholars of Gansu Province [Grant 22JR5RA223].more » « less
-
We investigate the stochastic optimization problem of minimizing population risk, where the loss defining the risk is assumed to be weakly convex. Compositions of Lipschitz convex functions with smooth maps are the primary examples of such losses. We analyze the estimation quality of such nonsmooth and nonconvex problems by their sample average approximations. Our main results establish dimension-dependent rates on subgradient estimation in full generality and dimension-independent rates when the loss is a generalized linear model. As an application of the developed techniques, we analyze the nonsmooth landscape of a robust nonlinear regression problem.more » « less
An official website of the United States government

