skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ligand control of regioselectivity in palladium-catalyzed heteroannulation reactions of 1,3-Dienes
Abstract Olefin carbofunctionalization reactions are indispensable tools for constructing diverse, functionalized scaffolds from simple starting materials. However, achieving precise control over regioselectivity in intermolecular reactions remains a formidable challenge. Here, we demonstrate that using PAd2nBu as a ligand enables regioselective heteroannulation ofo-bromoanilines with branched 1,3-dienes through ligand control. This approach provides regiodivergent access to 3-substituted indolines, showcasing excellent regioselectivity and reactivity across a range of functionalized substrates. To gain further insights into the origin of selectivity control, we employ a data-driven strategy, developing a linear regression model using calculated parameters for phosphorus ligands. This model identifies four key parameters governing regioselectivity in this transformation, paving the way for future methodology development. Additionally, density functional theory calculations elucidate key selectivity-determining transition structures along the reaction pathway, corroborating our experimental observations and establishing a solid foundation for future advancements in regioselective olefin difunctionalization reactions.  more » « less
Award ID(s):
2238081
PAR ID:
10581661
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Herein, we developed the recyclable ligand‐free iridium (Ir)‐hydride based Ir0nanoparticles (NPs) for the first regioselective partial hydrogenation of PV‐substituted naphthalenes. Both the isolated and in situ generated NPs are catalytically active. A control nuclear magnetic resonance (NMR) study revealed the presence of metal‐surface‐bound hydrides, most likely formed from Ir0species. A control NMR study confirmed that hexafluoroisopropanol as a solvent was accountable for substrate activation via hydrogen bonding. High‐resolution transmission electron microscopy of the catalyst supports the formation of ultrasmall NPs, and X‐ray photoelectron spectroscopy confirmed the dominance of Ir0in the NPs. The catalytic activity of NPs is broad as showcased by highly regioselective aromatic ring reduction in various phosphine oxides or phosphonates. The study also showcased a novel pathway toward preparingbis(diphenylphosphino)‐5,5′,6,6′,7,7′,8,8′‐octahydro‐1,1′‐binaphthyl (H8‐BINAP) and its derivatives without losing enantioselectivity during catalytic events. 
    more » « less
  2. Abstract Carbosulfenylation of olefins represents an important class of reactions for the synthesis of structurally diverse organosulfur compounds. Previous studies typically yield 1,2‐regioselectivity. In the context of diversity‐oriented synthesis, accessing the regioreversed products is desirable, significantly broadening the scope of these reactions. In this study, we report a nickel‐catalyzed 2,1‐carbosulfenylation of trifluoromethyl‐ andgem‐difluoroalkenes, using free thiols and benzyl bromides as sulfur and carbon sources, respectively. The unusual regioselectivity observed is enabled by a “radical sorting” mechanism. The Ni catalyst activates benzyl bromide to generate a benzylic radical that undergoes hydrogen atom transfer (HAT) with the thiol to form a sulfur‐centered radical. The sulfur radical subsequently adds to the fluoroalkenes, resulting in an α‐fluoroalkyl C‐radical. This radical undergoes SH2 with a Ni–CH2Ar to form a C(sp3)─C(sp3) bond and quaternary center, ultimately producing valuable fluoroalkyl thioethers. Isotopic labeling experiments corroborate a hydrogen atom transfer (HAT) event within the working mechanism. 
    more » « less
  3. Abstract Three BINOL‐based unsymmetric chiral dialdehydes, (S)‐4, (S)‐5, and (S)‐6, each containing a salicylaldehyde moiety and anortho‐,meta‐ orpara‐substituted benzaldehyde unit, are synthesized and used to react with the enantiomers of an unsymmetric chiral diamine, lysine. These reactions represent the first examples of regioselective as well as enantioselective reactions of an unsymmetric chiral dialdehyde with an unsymmetric chiral diamine to generate unsymmetric chiral macrocycles. The addition of Zn2+can further enhance the selectivity for the macrocycle formation. Compounds (S)‐4and (S)‐5are found to exhibit chemoselective and enantioselective fluorescent recognition of lysine in the presence of Zn2+
    more » « less
  4. Abstract The reduction of dioxygen to produce selectively H2O2or H2O is crucial in various fields. While platinum‐based materials excel in 4H+/4eoxygen reduction reaction (ORR) catalysis, cost and resource limitations drive the search for cost‐effective and abundant transition metal catalysts. It is thus of great importance to understand how the selectivity and efficiency of 3d‐metal ORR catalysts can be tuned. In this context, we report on a Co complex supported by a bisthiolate N2S2‐donor ligand acting as a homogeneous ORR catalyst in acetonitrile solutions both in the presence of a one‐electron reducing agent (selectivity for H2O of 93 % and TOFi=3 000 h−1) and under electrochemically‐assisted conditions (0.81 V <η<1.10 V, selectivity for H2O between 85 % and 95 %). Interestingly, such a predominant 4H+/4epathway for Co‐based ORR catalysts is rare, highlighting the key role of the thiolate donor ligand. Besides, the selectivity of this Co catalyst under chemical ORR conditions is inverse with respect to the Mn and Fe catalysts supported by the same ligand, which evidences the impact of the nature of the metal ion on the ORR selectivity. 
    more » « less
  5. Palladium‐catalyzed aryl amination and Heck arylation reactions are complementary transformations, generally requiring a suitable catalyst combination and a base. With substrates containing both an amino group and a vinyl moiety, control of C─N versus C─C reactivity can lead to regiodivergent functionalizations. With this focus, reactions of silyl‐protected 8‐vinyl 2'‐deoxyadenosine and adenosine with aryl bromides and iodides have been studied. Pd(OAc)2, Pd2(dba)3, and preformed dichloro[1,1′‐bis(di‐t‐butylphosphino)ferrocene]palladium (II) (Pd‐118) were evaluated as metal sources. Ligands tested were Xantphos, DPEphos, BIPHEP, and DPPF, with Cs2CO3and K3PO4as bases. In toluene as solvent, the Pd(OAc)2/Xantphos/Cs2CO3combination was uniquely capable of predominantN6arylation. Aryl bromides and iodides gave comparable product yields. Replacement of Cs2CO3with K3PO4redirected arylation from the nitrogen atom to the vinyl carbon atom, and all other catalyst, ligand, and base combinations gave Cvinylarylation as well. Simply switching from Pd(OAc)2to Pd2(dba)3resulted in loss of theN6‐selectivity and Cvinylarylation was favored. Based upon these results, using two structurally similar catalytic systems sequential CvinylandN6arylations of the nucleosides were accomplished. Some of the products were converted to other novel nucleoside analogues. Because some compounds were fluorescent, their photophysical properties were assessed experimentally and computationally. 
    more » « less