Abstract The interaction effect coefficient ψ has been a much-discussed, fundamental parameter of indirect genetic effect (IGE) models since its formal mathematical description in 1997. The coefficient simultaneously describes the form of changes in trait expression caused by genes in the social environment and predicts the evolutionary consequences of those IGEs. Here, we report a striking mismatch between theoretical emphasis on ψ and its usage in empirical studies. Surveying all IGE research, we find that the coefficient ψ has not been equivalently conceptualized across studies. Several issues related to its proper empirical measurement have recently been raised, and these may severely distort interpretations about the evolutionary consequences of IGEs. We provide practical advice on avoiding such pitfalls. The majority of empirical IGE studies use an alternative variance-partitioning approach rooted in well-established statistical quantitative genetics, but several hundred estimates of ψ (from 15 studies) have been published. A significant majority are positive. In addition, IGEs with feedback, that is, involving the same trait in both interacting partners, are far more likely to be positive and of greater magnitude. Although potentially challenging to measure without bias, ψ has critically-developed theoretical underpinnings that provide unique advantages for empirical work. We advocate for a shift in perspective for empirical work, from ψ as a description of IGEs, to ψ as a robust predictor of evolutionary change. Approaches that “run evolution forward” can take advantage of ψ to provide falsifiable predictions about specific trait interactions, providing much-needed insight into the evolutionary consequences of IGEs.
more »
« less
Putting Quantitative Models to the Test: An Application to the U.S.-China Trade War
Abstract The primary motivation behind quantitative work in international trade and many other fields is to shed light on the economic consequences of policy changes and other shocks. To help assess and potentially strengthen the credibility of such quantitative predictions, we introduce an IV-based goodness-of-fit measure that provides the basis for testing causal predictions in arbitrary general equilibrium environments as well as for estimating the average misspecification in these predictions. As an illustration of how to use the measure in practice, we revisit the welfare consequences of the U.S.-China trade war predicted by Fajgelbaum et al. (2020).
more »
« less
- Award ID(s):
- 2242367
- PAR ID:
- 10581791
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- The Quarterly Journal of Economics
- Volume:
- 140
- Issue:
- 2
- ISSN:
- 0033-5533
- Format(s):
- Medium: X Size: p. 1471-1524
- Size(s):
- p. 1471-1524
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cooke, Steven (Ed.)Abstract In the mid-continental grasslands of North America, climate change is increasing the intensity and frequency of extreme weather events. Increasingly severe storms and prolonged periods of elevated temperatures can impose challenges that adversely affect an individual's condition and, ultimately, survival. However, despite mounting evidence that extreme weather events, such as heavy rain storms, can impose short-term physiological challenges, we know little regarding the putative costs of such weather events. To determine the consequences of extreme weather for small endotherms, we tested predictions of the relationships between both severe precipitation events and wet bulb temperatures (an index that combines temperature and humidity) prior to capture with body composition and hematocrit of grasshopper sparrows (Ammodramus savannarum) caught during the breeding season at the Konza Prairie Biological Station, Kansas, USA, between 2014 and 2016. We measured each individual's fat mass, lean mass and total body water using quantitative magnetic resonance in addition to their hematocrit. Individuals exposed to storms in the 24 hours prior to capture had less fat reserves, more lean mass, more water and higher hematocrit than those exposed to moderate weather conditions. Furthermore, individuals stored more fat if they experienced high wet bulb temperatures in the week prior to capture. Overall, the analysis of these data indicate that extreme weather events take a physiological toll on small endotherms, and individuals may be forced to deplete fat stores and increase erythropoiesis to meet the physiological demands associated with surviving a storm. Elucidating the potential strategies used to cope with severe weather may enable us to understand the energetic consequences of increasingly severe weather in a changing world.more » « less
-
Abstract Natural selection drives the evolution of traits to optimize organismal performance, but optimization of one aspect of performance can influence other aspects of performance. Here, we asked how phenotypic variation between locally adapted fish populations affects locomotion and ventilation, testing for functional trade‐offs and trait–performance correlations. Specifically, we investigated two populations of livebearing fish (Poecilia mexicana) that inhabit distinct habitat types (hydrogen‐sulphide‐rich springs and adjacent nonsulphidic streams). For each individual, we quantified different metrics of burst swimming during simulated predator attacks, steady swimming and gill ventilation. Coinciding with predictions, we documented significant population differences in all aspects of performance, with fish from sulphidic habitats exhibiting higher steady swimming performance and higher ventilation capacity, but slower burst swimming. There was a significant functional trade‐off between steady and burst swimming, but not between different aspects of locomotion and ventilation. Although our findings about population differences in locomotion performance largely parallel the results from previous studies, we provide novel insights about how morphological variation might impact ventilation and ultimately oxygen acquisition. Overall, our analyses provided insights into the functional consequences of previously documented phenotypic variation, which will help to disentangle the effects of different sources of selection that may coincide along complex environmental gradients.more » « less
-
Abstract Understanding the evolutionary mechanisms underlying the maintenance of individual differences in behavior and physiology is a fundamental goal in ecology and evolution. The pace‐of‐life syndrome hypothesis is often invoked to explain the maintenance of such within‐population variation. This hypothesis predicts that behavioral traits are part of a suite of correlated traits that collectively determine an individual's propensity to prioritize reproduction or survival. A key assumption of this hypothesis is that these traits are underpinned by genetic trade‐offs among life‐history traits: genetic variants that increase fertility, reproduction and growth might also reduce lifespan. We performed a systematic literature review and meta‐analysis to summarize the evidence for the existence of genetic trade‐offs between five key life‐history traits: survival, growth rate, body size, maturation rate, and fertility. Counter to our predictions, we found an overall positive genetic correlation between survival and other life‐history traits and no evidence for any genetic correlations between the non‐survival life‐history traits. This finding was generally consistent across pairs of life‐history traits, sexes, life stages, lab vs. field studies, and narrow‐ vs. broad‐sense correlation estimates. Our study highlights that genetic trade‐offs may not be as common, or at least not as easily quantifiable, in animals as often assumed.more » « less
-
ABSTRACT Evolutionary responses to climate change may incur trade‐offs due to energetic constraints and mechanistic limitations, which are both influenced by environmental context. Adaptation to one stressor may result in life history trade‐offs, canalization of phenotypic plasticity, and the inability to tolerate other stressors, among other potential costs. While trade‐offs incurred during adaptation are difficult to detect in natural populations, experimental evolution can provide important insights by measuring correlated responses to selection as populations adapt to changing environments. However, studies testing for trade‐offs have generally lagged behind the growth in the use of experimental evolution in climate change studies. We argue that the important insights generated by the few studies that have tested for trade‐offs make a strong case for including these types of measurements in future studies of climate adaptation. For example, there is emerging consensus from experimental evolution studies that tolerance and tolerance plasticity trade‐offs are an often‐observed outcome of adaptation to anthropogenic change. In recent years, these types of studies have been strengthened by the use of sequencing of experimental populations, which provides promising new avenues for understanding the molecular mechanisms underlying observed phenotypic trade‐offs.more » « less
An official website of the United States government
