Abstract Based on experimental results of recent years, this article presents a qualitative description of a possible mechanism (termed the Mechanism) covering the main stages of lightning initiation, starting before and including the initiating event, followed by the initial electric field change (IEC), followed by the first few initial breakdown pulses (IBPs). The Mechanism assumes initiation occurs in a region of ~1 km3with average electric fieldE > 0.3 MV/(m·atm), which contains, because of turbulence, numerous small “Ethvolumes” of ~10−4–10−3 m3withE ≥ 3 MV/(m·atm). The Mechanism allows for lightning initiation by either of two observed types of events: a high‐power, very high frequency (VHF) event such as a Narrow Bipolar Event or a weak VHF event. According to the Mechanism, both types of initiating events are caused by a group of relativistic runaway electron avalanche particles (where the initial electrons are secondary particles of an extensive air shower) passing through manyEthvolumes, thereby causing the nearly simultaneous launching of many positive streamer flashes. Due to ionization‐heating instability, unusual plasma formations (UPFs) appear along the streamers' trajectories. These UPFs combine into three‐dimensional (3‐D) networks of hot plasma channels during the IEC, resulting in its observed weak current flow. The subsequent development and combination of two (or more) of these 3‐D networks of hot plasma channels then causes the first IBP. Each subsequent IBP is caused when another 3‐D network of hot plasma channels combines with the chain of networks caused by earlier IBPs. 
                        more » 
                        « less   
                    This content will become publicly available on January 16, 2026
                            
                            Observed Sprite Streamer Growth Rates
                        
                    
    
            Abstract Sprites have been recorded at ∼100,000 frames per second. One hundred and sixty five essentially vertically propagating streamers, 110 downward and 55 upward, have been selected for analysis. The initial velocity increase is exponential as predicted by theory. Growth rates could be determined for 76 downward and 46 upward propagating streamers, and, in individual streamers, they are independent of altitude. The average growth rate increases from 1.6 103in C‐sprites, to 2.6 103in carrots, to 8.4 103/s in jellyfish sprites. With a streamer model the driving electric field can be derived. Evaluating the field at 70 km altitude, we find fields of 98 (0.45 Ek), 121 (0.56 Ek), and 188 (0.87 Ek) V/m for the 3 sprite types, indicating that jellyfish sprites are the most energetic. High‐speed imaging can provide streamer growth rates and combined with a streamer model, the electric fields associated with various sprite features can be investigated. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2247153
- PAR ID:
- 10581834
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 52
- Issue:
- 1
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Fast breakdown (FB), a breakdown process composed of systems of high‐velocity streamers, has been observed to precede lightning leader formation and play a critical role in lightning initiation. Vigorous FB events are responsible for the most powerful natural radio emissions on Earth, known as narrow bipolar events (NBEs). In this paper, an improved version of the Griffiths and Phelps (1976,https://doi.org/10.1029/jc081i021p03671) model of streamer breakdown is used alongside supervised machine learning techniques to probe the required electric fields and potentials inside thunderstorms to produce FB and NBEs. Our results show that the electrostatic conditions needed to produceFB observed in New Mexico at 9 km altitude andFB in Florida at 14 km altitude are about the same, each requiring about 100 MV potential difference to propagate 500 m. Additionally, the model illustrates how electric field enhancement ahead of propagating FB can initiate rebounding FB of the opposite polarity.more » « less
- 
            Abstract In this paper we report the first close, high‐resolution observations of downward‐directed terrestrial gamma‐ray flashes (TGFs) detected by the large‐area Telescope Array cosmic ray observatory, obtained in conjunction with broadband VHF interferometer and fast electric field change measurements of the parent discharge. The results show that the TGFs occur during strong initial breakdown pulses (IBPs) in the first few milliseconds of negative cloud‐to‐ground and low‐altitude intracloud flashes and that the IBPs are produced by a newly identified streamer‐based discharge process called fast negative breakdown. The observations indicate the relativistic runaway electron avalanches (RREAs) responsible for producing the TGFs are initiated by embedded spark‐like transient conducting events (TCEs) within the fast streamer system and potentially also by individual fast streamers themselves. The TCEs are inferred to be the cause of impulsive sub‐pulses that are characteristic features of classic IBP sferics. Additional development of the avalanches would be facilitated by the enhanced electric field ahead of the advancing front of the fast negative breakdown. In addition to showing the nature of IBPs and their enigmatic sub‐pulses, the observations also provide a possible explanation for the unsolved question of how the streamer to leader transition occurs during the initial negative breakdown, namely, as a result of strong currents flowing in the final stage of successive IBPs, extending backward through both the IBP itself and the negative streamer breakdown preceding the IBP.more » « less
- 
            Abstract Streamers play a key role in the formation and propagation of lightning channels. In nature streamers rarely appear alone. Their ensemble behavior is very complex and challenging to describe. For instance, the intricate dynamics within the streamer zone of negative lightning leaders give rise to space stems, which help advance the stepped-leader. Another example is how the increasing morphological complexity of sprites can lead to higher sprite current and greater energy deposition in the mesosphere. Insights into the complex dynamics of a streamer corona can be obtained from laboratory experiments that allow us to control the conditions of streamer formation. Based on simultaneous nanosecond-temporal-resolution photography, and measurements of voltage, current, and x-ray emissions, we report the characteristics of negative laboratory streamers in 88 kPa of atmosphere. The streamers are produced at peak voltages of 62.2 ± 3.8 kV in a point-to-plane discharge gap of 6 cm. While all discharges were driven to the same peak voltage, the discharges occurred at different stages of the relatively slow voltage rise (177 ns), allowing us to study discharge properties as a function of onset voltage. The onset voltage ranged between 24 and 67 kV, but x-ray emissions were observed to only occur above 53 kV, with x-ray burst energies scaling quadratically with voltage. The average delay between the current pulse and x-ray emission was found to be 3.5 ± 0.5 ns, indicating that runaway electrons are produced during the streamer inception phase or no later than the transition stage, when the inception cloud is breaking into streamer filaments. During this short time span, runaway electrons can traverse the gap, hit the ground plate and produce bremsstrahlung x-ray photons. However, streamers themselves cannot traverse more than 3.5 mm across the gap, which supports the idea that runaway electron production is not associated to streamer connection to the ground electrode.more » « less
- 
            Abstract The first observation of possible transient luminous events (TLEs) on Jupiter was reported recently. Whereas initiation of elves on Jupiter has been theoretically studied before, the possibility of sprite streamer inception on Jupiter has not been investigated yet. Here we critically review the literature concerned with TLEs on Jupiter. Subsequently, we report on development of a numerical model for modeling of magnetized streamers in presence of Jupiter's strong magnetic field. The model utilizes the knowledge provided by recent observations of Jupiter's lightning and magnetic field by the Juno spacecraft. It is demonstrated that sprite streamer inception under realistic atmospheric conditions on Jupiter is possible.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
