Spatially distributed networks of large size arise in a variety of science and engineering problems, such as wireless sensor networks and smart power grids. Most of their features can be described by properties of their state-space matrices whose entries have indices in the vertex set of a graph. In this paper, we introduce novel algebras of Beurling type that contain matrices on a connected simple graph having polynomial off-diagonal decay, and we show that they are Banach subalgebras of the space of all bounded operators on the space of all p-summable sequences. The $$\ell^p$$-stability of state-space matrices is an essential hypothesis for the robustness of spatially distributed networks. In this paper, we establish the equivalence among -stabilities of matrices in Beurling algebras for different exponents $$p$$, with quantitative analysis for the lower stability bounds. Admission of norm-control inversion plays a crucial role in some engineering practice. In this paper, we prove that matrices in Beurling subalgebras of have norm-controlled inversion and we find a norm-controlled polynomial with close to optimal degree. Polynomial estimate to powers of matrices is important for numerical implementation of spatially distributed networks. In this paper, we apply our results on norm-controlled inversion to obtain a polynomial estimate to powers of matrices in Beurling algebras. The polynomial estimate is a noncommutative extension about convolution powers of a complex function and is applicable to estimate the probability of hopping from one agent to another agent in a stationary Markov chain on a spatially distributed network.
more »
« less
An asynchronous wireless network for capturing event-driven data from large populations of autonomous sensors
Abstract Networks of spatially distributed radiofrequency identification sensors could be used to collect data in wearable or implantable biomedical applications. However, the development of scalable networks remains challenging. Here we report a wireless radiofrequency network approach that can capture sparse event-driven data from large populations of spatially distributed autonomous microsensors. We use a spectrally efficient, low-error-rate asynchronous networking concept based on a code-division multiple-access method. We experimentally demonstrate the network performance of several dozen submillimetre-sized silicon microchips and complement this with large-scale in silico simulations. To test the notion that spike-based wireless communication can be matched with downstream sensor population analysis by neuromorphic computing techniques, we use a spiking neural network machine learning model to decode prerecorded open source data from eight thousand spiking neurons in the primate cortex for accurate prediction of hand movement in a cursor control task.
more »
« less
- Award ID(s):
- 2322600
- PAR ID:
- 10581857
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Nature Electronics
- Volume:
- 7
- Issue:
- 4
- ISSN:
- 2520-1131
- Page Range / eLocation ID:
- 313 to 324
- Subject(s) / Keyword(s):
- wireless sensor networks
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Wireless infrastructure is steadily evolving into wireless access for all humans and most devices, from 5G to Internet-of-Things. This widespread access creates the expectation of custom and adaptive services from the personal network to the backbone network. In addition, challenges of scale and interoperability exist across networks, applications and services, requiring an effective wireless network management infrastructure. For this reason Software-Defined Networks (SDN) have become an attractive research area for wireless and mobile systems. SDN can respond to sporadic topology issues such as dropped packets, message latency, and/or conflicting resource management, to improved collaboration between mobile access points, reduced interference and increased security options. Until recently, the main focus on wireless SDN has been a more centralized approach, which has issues with scalability, fault tolerance, and security. In this work, we propose a state of the art WAM-SDN system for large-scale network management. We discuss requirements for large scale wireless distributed WAM-SDN and provide preliminary benchmarking and performance analysis based on our hybrid distributed and decentralized architecture. Keywords: software defined networks, controller optimization, resilience.more » « less
-
It is widely assumed that distributed neuronal networks are fundamental to the functioning of the brain. Consistent spike timing between neurons is thought to be one of the key principles for the formation of these networks. This can involve synchronous spiking or spiking with time delays, forming spike sequences when the order of spiking is consistent. Finding networks defined by their sequence of time-shifted spikes, denoted here as spike timing networks, is a tremendous challenge. As neurons can participate in multiple spike sequences at multiple between-spike time delays, the possible complexity of networks is prohibitively large. We present a novel approach that is capable of (1) extracting spike timing networks regardless of their sequence complexity, and (2) that describes their spiking sequences with high temporal precision. We achieve this by decomposing frequency-transformed neuronal spiking into separate networks, characterizing each network’s spike sequence by a time delay per neuron, forming a spike sequence timeline. These networks provide a detailed template for an investigation of the experimental relevance of their spike sequences. Using simulated spike timing networks, we show network extraction is robust to spiking noise, spike timing jitter, and partial occurrences of the involved spike sequences. Using rat multi-neuron recordings, we demonstrate the approach is capable of revealing real spike timing networks with sub-millisecond temporal precision. By uncovering spike timing networks, the prevalence, structure, and function of complex spike sequences can be investigated in greater detail, allowing us to gain a better understanding of their role in neuronal functioning.more » « less
-
Abstract Spike-timing-dependent plasticity (STDP) is an unsupervised learning mechanism for spiking neural networks that has received significant attention from the neuromorphic hardware community. However, scaling such local learning techniques to deeper networks and large-scale tasks has remained elusive. In this work, we investigate a Deep-STDP framework where a rate-based convolutional network, that can be deployed in a neuromorphic setting, is trained in tandem with pseudo-labels generated by the STDP clustering process on the network outputs. We achieve 24.56% higher accuracy and 3.5 × faster convergence speed at iso-accuracy on a 10-class subset of the Tiny ImageNet dataset in contrast to ak-means clustering approach.more » « less
-
A core problem in systems and circuits neuroscience is deciphering the origin of shared dynamics in neuronal activity: Do they emerge through local network interactions, or are they inherited from external sources? We explore this question with large-scale networks of spatially ordered spiking neuron models where a downstream network receives input from an upstream sender network. We show that linear measures of the communication between the sender and receiver networks can discriminate between emergent or inherited population dynamics. A match in the dimensionality of the sender and receiver population activities promotes faithful communication. In contrast, a nonlinear mapping between the sender to receiver activity, for example, through downstream emergent population-wide fluctuations, can impair linear communication. Our work exposes the benefits and limitations of linear measures when analyzing between-area communication in circuits with rich population-wide neuronal dynamics.more » « less
An official website of the United States government

