The COVID-19 pandemic has posed grand challenges to policy makers, raising major social conflicts between public health and economic resilience. Policies such as closure or reopen of businesses are made based on scientific projections of infection risks obtained from infection dynamics models. While most parameters in infection dynamics models can be set using domain knowledge of COVID-19, a key parameter - human mobility - is often challenging to estimate due to complex social contexts and limited training data under escalating COVID-19 conditions. To address these challenges, we formulate the problem as a spatio-temporal data generation problem and propose COVID-GAN, amore »
This content will become publicly available on April 30, 2023
COVID-GAN+: Estimating Human Mobility Responses to COVID-19 through Spatio-temporal Generative Adversarial Networks with Enhanced Features
Estimating human mobility responses to the large-scale spreading of the COVID-19 pandemic is crucial, since its significance guides policymakers to give Non-pharmaceutical Interventions, such as closure or reopening of businesses. It is challenging to model due to complex social contexts and limited training data. Recently, we proposed a conditional generative adversarial network (COVID-GAN) to estimate human mobility response under a set of social and policy conditions integrated from multiple data sources. Although COVID-GAN achieves a good average estimation accuracy under real-world conditions, it produces higher errors in certain regions due to the presence of spatial heterogeneity and outliers. To address these issues, in this article, we extend our prior work by introducing a new spatio-temporal deep generative model, namely, COVID-GAN+. COVID-GAN+ deals with the spatial heterogeneity issue by introducing a new spatial feature layer that utilizes the local Moran statistic to model the spatial heterogeneity strength in the data. In addition, we redesign the training objective to learn the estimated mobility changes from historical average levels to mitigate the effects of spatial outliers. We perform comprehensive evaluations using urban mobility data derived from cell phone records and census data. Results show that COVID-GAN+ can better approximate real-world human mobility responses more »
- Publication Date:
- NSF-PAR ID:
- 10326802
- Journal Name:
- ACM Transactions on Intelligent Systems and Technology
- Volume:
- 13
- Issue:
- 2
- Page Range or eLocation-ID:
- 1 to 23
- ISSN:
- 2157-6904
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The objective of this study is to examine the transmission risk of COVID-19 based on cross-county population co-location data from Facebook. The rapid spread of COVID-19 in the United States has imposed a major threat to public health, the real economy, and human well-being. With the absence of effective vaccines, the preventive actions of social distancing, travel reduction and stay-at-home orders are recognized as essential non-pharmacologic approaches to control the infection and spatial spread of COVID-19. Prior studies demonstrated that human movement and mobility drove the spatiotemporal distribution of COVID-19 in China. Little is known, however, about the patternsmore »
-
This work quanti es mobility changes observed during the di erent phases of the pandemic world-wide at multiple resolutions { county, state, country { using an anonymized aggregate mobility map that captures population ows between geographic cells of size 5 km2. As we overlay the global mobility map with epidemic incidence curves and dates of government interventions, we observe that as case counts rose, mobility fell and has since then seen a slow but steady increase in ows. Further, in order to understand mixing within a region, we propose a new metric to quantify the e ect of social distancingmore »
-
The ongoing highly contagious coronavirus disease 2019 (COVID-19) pandemic, which started in Wuhan, China, in December 2019, has now become a global public health problem. Using publicly available data from the COVID-19 data repository of Our World in Data, we aimed to investigate the influences of spatial socio-economic vulnerabilities and neighbourliness on the COVID-19 burden in African countries. We analyzed the first wave (January–September 2020) and second wave (October 2020 to May 2021) of the COVID-19 pandemic using spatial statistics regression models. As of 31 May 2021, there was a total of 4,748,948 confirmed COVID-19 cases, with an average, median,more »
-
Given an urban development plan and the historical traffic observations over the road network, the Conditional Urban Traffic Estimation problem aims to estimate the resulting traffic status prior to the deployment of the plan. This problem is of great importance to urban development and transportation management, yet is very challenging because the plan would change the local travel demands drastically and the new travel demand pattern might be unprecedented in the historical data. To tackle these challenges, we propose a novel Conditional Urban Traffic Generative Adversarial Network (Curb-GAN), which provides traffic estimations in consecutive time slots based on different (unprecedented)more »