The interface properties and thermal stability of bismuth (Bi) contacts on molybdenum disulfide (MoS2) shed light on their behavior under various deposition conditions and temperatures. The examination involves extensive techniques including X-ray photoelectron spectroscopy, scanning tunneling microscopy (STM), and scanning tunneling spectroscopy (STS). Bi contacts formed a van der Waals interface on MoS2 regardless of deposition conditions, such as ultrahigh vacuum (UHV, 3 × 10–11 mbar) and high vacuum (HV, 4 × 10–6 mbar), while the oxidation on MoS2 has been observed. However, the semimetallic properties of Bi suppress the impact of defect states, including oxidized-MoS2 and vacancies. Notably, the n-type characteristic of Bi/MoS2 remains unaffected, and no significant changes in the local density of states near the conduction band minimum are observed despite the presence of defects detected by STM and STS. As a result, the Fermi level (EF) resides below the conduction band of MoS2. The study also examines the impact of annealing on the contact interface, revealing no interface reaction between Bi and MoS2 up to 300 °C. These findings enhance our understanding of semimetal (Bi) contacts on MoS2, with implications for improving the performance and reliability of electronic devices. 
                        more » 
                        « less   
                    
                            
                            Low Contact Resistance on Monolayer MoS 2 Field-Effect Transistors Achieved by CMOS-Compatible Metal Contacts
                        
                    
    
            Contact engineering on monolayer layer (ML) semiconducting transition metal dichalcogenides (TMDs) is considered the most challenging problem towards using these materials as a transistor channel in future advanced technology nodes. The typically observed strong Femi level pinning induced in part by the reaction of the source/drain contact metal and the ML TMD frequently results in a large Schottky barrier height, which limits the electrical performance of ML TMD field-effect transistors (FETs). However, at a microscopic level, little is known about how interface defects or reaction sites impact the electrical performance of ML TMD FETs. In this work, we have performed statistically meaningful electrical measurements on at least 120 FETs combined with careful surface analysis to unveil contact resistance dependencies on the interface chemistry. In particular, we achieved a low contact resistance for ML MoS2 FETs with ultra-high vacuum (UHV, 3×10-11 mbar) deposited Ni contacts, ~500 ohm·μm, which is 5 times lower than the contact resistance achieved when deposited at high vacuum (HV, 3×10-6 mbar) conditions. These electrical results strongly correlate with our surface analysis observations. X-ray photoelectron spectroscopy (XPS) revealed significant bonding species between Ni and MoS2 under UHV conditions compared to HV. We also studied the Bi/MoS2 interface under UHV and HV deposition conditions. Different from the case of Ni, we do not observe a difference in contact resistance or interface chemistry between contacts deposited under UHV and HV. Finally, this article also explores the thermal stability and reliability of the two contact metals employed here. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2002741
- PAR ID:
- 10531719
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- ACS Nano
- ISSN:
- 1936-0851
- Subject(s) / Keyword(s):
- Contact interface engineering, low contact resistance, monolayer MoS2, field-effect transistors, CMOS-compatible, thermal stability, interface chemistry
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Two-dimensional semiconductors such as transition metal dichalcogenides (TMDs) are making impressive strides in a short duration compared to other candidates. However, to unlock their full potential for advanced logic transistors, attention must be given to improving the contacts or interfaces they form. One approach is to interface with a suitable low work function metal contact to allow the surface Fermi level (EF) movement toward intended directions, thereby augmenting the overall electrical performance. In this work, we implement physical characterization to understand the tin (Sn) contact interface on monolayer and bulk molybdenum disulfide (MoS2) via in situ x-ray photoelectron spectroscopy and ex situ atomic force microscopy. A Sn contact exhibited a van der Waals type weak interaction with the MoS2 bulk surface where no reaction between Sn and MoS2 is detected. In contrast, reaction products with Sn—S bonding are detected with a monolayer surface consistent with a covalentlike interface. Band alignment at the interface indicates that Sn deposition induces n-type properties in the bulk substrate, while EF of the monolayer remains pinned. In addition, the thermal stability of Sn on the same substrates is investigated in a sequential ultrahigh vacuum annealing treatment at 100, 200, 300, and 400 °C. Sn sublimated/desorbed from both substrates with increasing temperature, which is more prominent on the bulk substrate after annealing at 400 °C. Additionally, Sn significantly reduced the monolayer substrate and produced detectable interface reaction products at higher annealing temperatures. The findings can be strategized to resolve challenges with contact resistance that the device community is having with TMDs.more » « less
- 
            Recently, the fabricated MoS2 field effect transistors (FETs) with 1T-MoS2 electrodes exhibit excellent performance with rather low contact resistance, as compared with those with metals deposited directly on 2H-MoS2 (Kappera et al 2014 Nat. Mater. 13 1128), but the reason for that remains elusive. By means of density functional theory calculations, we investigated the carrier injection at the 1T/2H MoS2 interface and found that although the Schottky barrier height (SBH) values of 1T/2H MoS2 interfaces can be tuned by controlling the stacking patterns, the p-type SBH values of 1T/2H MoS2 interfaces with different stackings are lower than their corresponding n-type SBH values, which demonstrated that the metallic 1T phase can be used as an efficient hole injection layer for 2H-MoS2. In addition, as compared to the n-type Au/MoS2 and Pd/MoS2 contacts, the p-type SBH values of 1T/2H MoS2 interfaces are much lower, which stem from the efficient hole injection between 1T-MoS2 and 2H-MoS2. This can explain the low contact resistance in the MoS2 FETs with 1T-MoS2 electrodes. Notably, the SBH values can be effectively modulated by an external electric field, and a significantly low p-type SBH value can be achieved under an appropriate electric field. We also demonstrated that this approach is also valid for WS2, WSe2 and MoSe2 systems, which indicates that the method can most likely be extended to other TMDs, and thus may open new promising avenues of contact engineering in these materials.more » « less
- 
            Tungsten transition metal dichalcogenides (W-TMDs) are intriguing due to their properties and potential for application in next-generation electronic devices. However, strong Fermi level (EF) pinning manifests at the metal/W-TMD interfaces, which could tremendously restrain the carrier injection into the channel. In this work, we illustrate the origins of EF pinning for Ni and Ag contacts on W-TMDs by considering interface chemistry, band alignment, impurities, and imperfections of W-TMDs, contact metal adsorption mechanism, and the resultant electronic structure. We conclude that the origins of EF pinning at a covalent contact metal/W-TMD interface, such as Ni/W-TMDs, can be attributed to defects, impurities, and interface reaction products. In contrast, for a van der Waals contact metal/TMD system such as Ag/W-TMDs, the primary factor responsible for EF pinning is the electronic modification of the TMDs resulting from the defects and impurities with the minor impact of metal-induced gap states. The potential strategies for carefully engineering the metal deposition approach are also discussed. This work unveils the origins of EF pinning at metal/TMD interfaces experimentally and theoretically and provides guidance on further enhancing and improving the device performance.more » « less
- 
            Abstract This paper provides comprehensive experimental analysis relating to improvements in the two-dimensional (2D) p-type metal–oxide–semiconductor (PMOS) field effect transistors (FETs) by pure van der Waals (vdW) contacts on few-layer tungsten diselenide (WSe2) with high-k metal gate (HKMG) stacks. Our analysis shows that standard metallization techniques (e.g., e-beam evaporation at moderate pressure ~ 10–5 torr) results in significant Fermi-level pinning, but Schottky barrier heights (SBH) remain small (< 100 meV) when using high work function metals (e.g., Pt or Pd). Temperature-dependent analysis uncovers a more dominant contribution to contact resistance from the channel access region and confirms significant improvement through less damaging metallization techniques (i.e., reduced scattering) combined with strongly scaled HKMG stacks (enhanced carrier density). A clean contact/channel interface is achieved through high-vacuum evaporation and temperature-controlled stepped deposition providing large improvements in contact resistance. Our study reports low contact resistance of 5.7 kΩ-µm, with on-state currents of ~ 97 µA/µm and subthreshold swing of ~ 140 mV/dec in FETs with channel lengths of 400 nm. Furthermore, theoretical analysis using a Landauer transport ballistic model for WSe2SB-FETs elucidates the prospects of nanoscale 2D PMOS FETs indicating high-performance (excellent on-state current vs subthreshold swing benchmarks) towards the ultimate CMOS scaling limit.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    