skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding the effect of Prandtl number on momentum and scalar mixing rates in neutral and stably stratified flows using gradient field dynamics
Recently, direct numerical simulations (DNS) of stably stratified turbulence have shown that as the Prandtl number ($$Pr$$) is increased from 1 to 7, the mean turbulent potential energy dissipation rate (TPE-DR) drops dramatically, while the mean turbulent kinetic energy dissipation rate (TKE-DR) increases significantly. Through an analysis of the equations governing the fluctuating velocity and density gradients we provide a mechanistic explanation for this surprising behaviour and test the predictions using DNS. We show that the mean density gradient gives rise to a mechanism that opposes the production of fluctuating density gradients, and this is connected to the emergence of ramp cliffs. The same term appears in the velocity gradient equation but with the opposite sign, and is the contribution from buoyancy. This term is ultimately the reason why the TPE-DR reduces while the TKE-DR increases with increasing$$Pr$$. Our analysis also predicts that the effects of buoyancy on the smallest scales of the flow become stronger as$$Pr$$is increased, and this is confirmed by our DNS data. A consequence of this is that the standard buoyancy Reynolds number does not correctly estimate the impact of buoyancy at the smallest scales when$$Pr$$deviates from 1, and we derive a suitable alternative parameter. Finally, an analysis of the filtered gradient equations reveals that the mean density gradient term changes sign at sufficiently large scales, such that buoyancy acts as a source for velocity gradients at small scales, but as a sink at large scales.  more » « less
Award ID(s):
2042346
PAR ID:
10582026
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Fluid Mechanics
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
992
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe the rising trajectory of bubbles in isotropic turbulence and quantify the slowdown of the mean rise velocity of bubbles with sizes within the inertial subrange. We perform direct numerical simulations of bubbles, for a wide range of turbulence intensity, bubble inertia and deformability, with systematic comparison with the corresponding quiescent case, with Reynolds number at the Taylor microscale from 38 to 77. Turbulent fluctuations randomise the rising trajectory and cause a reduction of the mean rise velocity$$\tilde {w}_b$$compared with the rise velocity in quiescent flow$$w_b$$. The decrease in mean rise velocity of bubbles$$\tilde {w}_b/w_b$$is shown to be primarily a function of the ratio of the turbulence intensity and the buoyancy forces, described by the Froude number$$Fr=u'/\sqrt {gd}$$, where$$u'$$is the root-mean-square velocity fluctuations,$$g$$is gravity and$$d$$is the bubble diameter. The bubble inertia, characterised by the ratio of inertial to viscous forces (Galileo number), and the bubble deformability, characterised by the ratio of buoyancy forces to surface tension (Bond number), modulate the rise trajectory and velocity in quiescent fluid. The slowdown of these bubbles in the inertial subrange is not due to preferential sampling, as is the case with sub-Kolmogorov bubbles. Instead, it is caused by the nonlinear drag–velocity relationship, where velocity fluctuations lead to an increased average drag. For$$Fr > 0.5$$, we confirm the scaling$$\tilde {w}_b / w_b \propto 1 / Fr$$, as proposed previously by Ruthet al.(J. Fluid Mech., vol. 924, 2021, p. A2), over a wide range of bubble inertia and deformability. 
    more » « less
  2. We explored the settling dynamics of vertically aligned particles in a quiescent, stratified two-layer fluid using particle tracking velocimetry. Glass spheres of$$d=4\,{\rm mm}$$diameter were released at frequencies of 4, 6 and 8 Hz near the free surface, traversing through an upper ethanol layer ($$H_1$$), whereHis height or layer thickess, varying from$$10d$$to$$40d$$and a lower oil layer. Results reveal pronounced lateral particle motion in the ethanol layer, attributed to a higher Galileo number ($$Ga = 976$$, ratio of buoyancy–gravity to viscous effects), compared with the less active behaviour in the oil layer ($$Ga = 16$$). The ensemble vertical velocity of particles exhibited a minimum just past the density interface, becoming more pronounced with increasing$$H_1$$, and suggesting that enhanced entrainment from ethanol to oil resulted in an additional buoyancy force. This produced distinct patterns of particle acceleration near the density interface, which were marked by significant deceleration, indicating substantial resistance to particle motion. An increased drag coefficient occurred for$$H_1/d = 40$$compared with a single particle settling in oil; drag reduced as the particle-release frequency ($$\,f_p$$) increased, likely due to enhanced particle interactions at closer proximity. Particle pair dispersions, lateral ($$R^2_L$$) and vertical ($$R^2_z$$), were modulated by$$H_1$$, initial separation$$r_0$$and$$f_p$$. The$$R^2_L$$dispersion displayed ballistic scaling initially, Taylor scaling for$$r_0 < H_1$$and Richardson scaling for$$r_0 > H_1$$. In contrast,$$R^2_z$$followed a$$R^2_z \sim t^{5.5}$$scaling under$$r_0 < H_1$$. Both$$R^2_L$$and$$R^2_z$$plateaued at a distance from the interface, depending on$$H_1$$and$$f_p$$. 
    more » « less
  3. Geophysical and astrophysical fluid flows are typically driven by buoyancy and strongly constrained at large scales by planetary rotation. Rapidly rotating Rayleigh–Bénard convection (RRRBC) provides a paradigm for experiments and direct numerical simulations (DNS) of such flows, but the accessible parameter space remains restricted to moderately fast rotation rates (Ekman numbers$${ {Ek}} \gtrsim 10^{-8}$$), while realistic$${Ek}$$for geo- and astrophysical applications are orders of magnitude smaller. On the other hand, previously derived reduced equations of motion describing the leading-order behaviour in the limit of very rapid rotation ($$ {Ek}\to 0$$) cannot capture finite rotation effects, and the physically most relevant part of parameter space with small but finite$${Ek}$$has remained elusive. Here, we employ the rescaled rapidly rotating incompressible Navier–Stokes equations (RRRiNSE) – a reformulation of the Navier–Stokes–Boussinesq equations informed by the scalings valid for$${Ek}\to 0$$, recently introduced by Julienet al.(2024) – to provide full DNS of RRRBC at unprecedented rotation strengths down to$$ {Ek}=10^{-15}$$and below, revealing the disappearance of cyclone–anticyclone asymmetry at previously unattainable Ekman numbers ($${Ek}\approx 10^{-9}$$). We also identify an overshoot in the heat transport as$${Ek}$$is varied at fixed$$\widetilde { {Ra}} \equiv {Ra}{Ek}^{4/3}$$, where$$Ra$$is the Rayleigh number, associated with dissipation due to ageostrophic motions in the boundary layers. The simulations validate theoretical predictions based on thermal boundary layer theory for RRRBC and show that the solutions of RRRiNSE agree with the reduced equations at very small$${Ek}$$. These results represent a first foray into the vast, largely unexplored parameter space of very rapidly rotating convection rendered accessible by RRRiNSE. 
    more » « less
  4. Electrophoresis is the motion of a charged colloidal particle in an electrolyte under an applied electric field. The electrophoretic velocity of a spherical particle depends on the dimensionless electric field strength$$\beta =a^*e^*E_\infty ^*/k_B^*T^*$$, defined as the ratio of the product of the applied electric field magnitude$$E_\infty ^*$$and particle radius$$a^*$$, to the thermal voltage$$k_B^*T^*/e^*$$, where$$k_B^*$$is Boltzmann's constant,$$T^*$$is the absolute temperature, and$$e^*$$is the charge on a proton. In this paper, we develop a spectral element algorithm to compute the electrophoretic velocity of a spherical, rigid, dielectric particle, of fixed dimensionless surface charge density$$\sigma$$over a wide range of$$\beta$$. Here,$$\sigma =(e^*a^*/\epsilon ^*k_B^*T^*)\sigma ^*$$, where$$\sigma ^*$$is the dimensional surface charge density, and$$\epsilon ^*$$is the permittivity of the electrolyte. For moderately charged particles ($$\sigma ={O}(1)$$), the electrophoretic velocity is linear in$$\beta$$when$$\beta \ll 1$$, and its dependence on the ratio of the Debye length ($$1/\kappa ^*$$) to particle radius (denoted by$$\delta =1/(\kappa ^*a^*)$$) agrees with Henry's formula. As$$\beta$$increases, the nonlinear contribution to the electrophoretic velocity becomes prominent, and the onset of this behaviour is$$\delta$$-dependent. For$$\beta \gg 1$$, the electrophoretic velocity again becomes linear in field strength, approaching the Hückel limit of electrophoresis in a dielectric medium, for all$$\delta$$. For highly charged particles ($$\sigma \gg 1$$) in the thin-Debye-layer limit ($$\delta \ll 1$$), our computations are in good agreement with recent experimental and asymptotic results. 
    more » « less
  5. Abstract A result of Gyárfás [12] exactly determines the size of a largest monochromatic component in an arbitrary$$r$$-colouring of the complete$$k$$-uniform hypergraph$$K_n^k$$when$$k\geq 2$$and$$k\in \{r-1,r\}$$. We prove a result which says that if one replaces$$K_n^k$$in Gyárfás’ theorem by any ‘expansive’$$k$$-uniform hypergraph on$$n$$vertices (that is, a$$k$$-uniform hypergraph$$G$$on$$n$$vertices in which$$e(V_1, \ldots, V_k)\gt 0$$for all disjoint sets$$V_1, \ldots, V_k\subseteq V(G)$$with$$|V_i|\gt \alpha$$for all$$i\in [k]$$), then one gets a largest monochromatic component of essentially the same size (within a small error term depending on$$r$$and$$\alpha$$). As corollaries we recover a number of known results about large monochromatic components in random hypergraphs and random Steiner triple systems, often with drastically improved bounds on the error terms. Gyárfás’ result is equivalent to the dual problem of determining the smallest possible maximum degree of an arbitrary$$r$$-partite$$r$$-uniform hypergraph$$H$$with$$n$$edges in which every set of$$k$$edges has a common intersection. In this language, our result says that if one replaces the condition that every set of$$k$$edges has a common intersection with the condition that for every collection of$$k$$disjoint sets$$E_1, \ldots, E_k\subseteq E(H)$$with$$|E_i|\gt \alpha$$, there exists$$(e_1, \ldots, e_k)\in E_1\times \cdots \times E_k$$such that$$e_1\cap \cdots \cap e_k\neq \emptyset$$, then the smallest possible maximum degree of$$H$$is essentially the same (within a small error term depending on$$r$$and$$\alpha$$). We prove our results in this dual setting. 
    more » « less