BackgroundGenome‐wide association studies (GWASs) have identified thousands of genetic variants that are associated with many complex traits. However, their biological mechanisms remain largely unknown. Transcriptome‐wide association studies (TWAS) have been recently proposed as an invaluable tool for investigating the potential gene regulatory mechanisms underlying variant‐trait associations. Specifically, TWAS integrate GWAS with expression mapping studies based on a common set of variants and aim to identify genes whose GReX is associated with the phenotype. Various methods have been developed for performing TWAS and/or similar integrative analysis. Each such method has a different modeling assumption and many were initially developed to answer different biological questions. Consequently, it is not straightforward to understand their modeling property from a theoretical perspective. ResultsWe present a technical review on thirteen TWAS methods. Importantly, we show that these methods can all be viewed as two‐sample Mendelian randomization (MR) analysis, which has been widely applied in GWASs for examining the causal effects of exposure on outcome. Viewing different TWAS methods from an MR perspective provides us a unique angle for understanding their benefits and pitfalls. We systematically introduce the MR analysis framework, explain how features of the GWAS and expression data influence the adaptation of MR for TWAS, and re‐interpret the modeling assumptions made in different TWAS methods from an MR angle. We finally describe future directions for TWAS methodology development. ConclusionsWe hope that this review would serve as a useful reference for both methodologists who develop TWAS methods and practitioners who perform TWAS analysis. 
                        more » 
                        « less   
                    
                            
                            MR.RGM: an R package for fitting Bayesian multivariate bidirectional Mendelian randomization networks
                        
                    
    
            Abstract MotivationMendelian randomization (MR) infers causal relationships between exposures and outcomes using genetic variants as instrumental variables. Typically, MR considers only a pair of exposure and outcome at a time, limiting its capability of capturing the entire causal network. We overcome this limitation by developing MR.RGM (Mendelian randomization via reciprocal graphical model), a fast R-package that implements the Bayesian reciprocal graphical model and enables practitioners to construct holistic causal networks with possibly cyclic/reciprocal causation and proper uncertainty quantifications, offering a comprehensive understanding of complex biological systems and their interconnections. ResultsWe developed MR.RGM, an open-source R package that applies bidirectional MR using a network-based strategy, enabling the exploration of causal relationships among multiple variables in complex biological systems. MR.RGM holds the promise of unveiling intricate interactions and advancing our understanding of genetic networks, disease risks, and phenotypic complexities. Availability and implementationMR.RGM is available at CRAN (https://CRAN.R-project.org/package=MR.RGM, DOI: 10.32614/CRAN.package.MR.RGM) and https://github.com/bitansa/MR.RGM. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2112943
- PAR ID:
- 10582374
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Bioinformatics
- Volume:
- 41
- Issue:
- 4
- ISSN:
- 1367-4811
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract SummaryMolecular mechanisms of biological functions and disease processes are exceptionally complex, and our ability to interrogate and understand relationships is becoming increasingly dependent on the use of computational modeling. We have developed “BioModME,” a standalone R-based web application package, providing an intuitive and comprehensive graphical user interface to help investigators build, solve, visualize, and analyze computational models of complex biological systems. Some important features of the application package include multi-region system modeling, custom reaction rate laws and equations, unit conversion, model parameter estimation utilizing experimental data, and import and export of model information in the Systems Biology Matkup Language format. The users can also export models to MATLAB, R, and Python languages and the equations to LaTeX and Mathematical Markup Language formats. Other important features include an online model development platform, multi-modality visualization tool, and efficient numerical solvers for differential-algebraic equations and optimization. Availability and implementationAll relevant software information including documentation and tutorials can be found at https://mcw.marquette.edu/biomedical-engineering/computational-systems-biology-lab/biomodme.php. Deployed software can be accessed at https://biomodme.ctsi.mcw.edu/. Source code is freely available for download at https://github.com/MCWComputationalBiologyLab/BioModME.more » « less
- 
            Abstract MotivationComputer inference of biological mechanisms is increasingly approachable due to dynamically rich data sources such as single-cell genomics. Inferred molecular interactions can prioritize hypotheses for wet-lab experiments to expedite biological discovery. However, complex data often come with unwanted biological or technical variations, exposing biases over marginal distribution and sample size in current methods to favor spurious causal relationships. ResultsConsidering function direction and strength as evidence for causality, we present an adapted functional chi-squared test (AdpFunChisq) that rewards functional patterns over non-functional or independent patterns. On synthetic and three biology datasets, we demonstrate the advantages of AdpFunChisq over 10 methods on overcoming biases that give rise to wide fluctuations in the performance of alternative approaches. On single-cell multiomics data of multiple phenotype acute leukemia, we found that the T-cell surface glycoprotein CD3 delta chain may causally mediate specific genes in the viral carcinogenesis pathway. Using the causality-by-functionality principle, AdpFunChisq offers a viable option for robust causal inference in dynamical systems. Availability and implementationThe AdpFunChisq test is implemented in the R package ‘FunChisq’ (2.5.2 or above) at https://cran.r-project.org/package=FunChisq. All other source code along with pre-processed data is available at Code Ocean https://doi.org/10.24433/CO.2907738.v1 Supplementary informationSupplementary materials are available at Bioinformatics online.more » « less
- 
            Abstract Integrating results from genome-wide association studies (GWASs) and gene expression studies through transcriptome-wide association study (TWAS) has the potential to shed light on the causal molecular mechanisms underlying disease etiology. Here, we present a probabilistic Mendelian randomization (MR) method, PMR-Egger, for TWAS applications. PMR-Egger relies on a MR likelihood framework that unifies many existing TWAS and MR methods, accommodates multiple correlated instruments, tests the causal effect of gene on trait in the presence of horizontal pleiotropy, and is scalable to hundreds of thousands of individuals. In simulations, PMR-Egger provides calibrated type I error control for causal effect testing in the presence of horizontal pleiotropic effects, is reasonably robust under various types of model misspecifications, is more powerful than existing TWAS/MR approaches, and can directly test for horizontal pleiotropy. We illustrate the benefits of PMR-Egger in applications to 39 diseases and complex traits obtained from three GWASs including the UK Biobank.more » « less
- 
            Abstract Mendelian randomization (MR) has been a popular method in genetic epidemiology to estimate the effect of an exposure on an outcome using genetic variants as instrumental variables (IV), with two‐sample summary‐data MR being the most popular. Unfortunately, instruments in MR studies are often weakly associated with the exposure, which can bias effect estimates and inflate Type I errors. In this work, we propose test statistics that are robust under weak‐instrument asymptotics by extending the Anderson–Rubin, Kleibergen, and the conditional likelihood ratio test in econometrics to two‐sample summary‐data MR. We also use the proposed Anderson–Rubin test to develop a point estimator and to detect invalid instruments. We conclude with a simulation and an empirical study and show that the proposed tests control size and have better power than existing methods with weak instruments.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
