skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatially and Temporally Variable Impacts of Hurricanes on Shallow Sediment Structure
Abstract Sediment dynamics are fundamental to understanding coastal resiliency to climate change in the coming decades. Tropical cyclones can radically alter shallow sediment properties; however, the uncertain and destructive nature of tropical cyclones make understanding and predicting their impacts on sediments challenging. Here, grain size sampling in conjunction with continuous hydrodynamic data provided an unprecedented perspective of the impacts of two tropical cyclones, including Hurricane Sally (2020), in which the inner core of the storm passed directly over the field sites, on shallow coastal sediments in Alabama (USA). Sampling directly before and after Sally as well as out to ∼7 months after the second storm event, Hurricane Zeta, showed that the changes in sediments following storm events exhibited notable site‐to‐site variability. This variability during the first storm event was consistent with low sand supply and flow interactions driven by local bathymetry that led to sand transport and deposition at some previously‐muddy sites, near‐surface mud loss at some sandy sites, or little change at others. Post‐Sally impacts to grain size were well preserved 8 months after the storm, despite passage of Zeta as well as seasonal winds and riverine inputs during winter and spring. Overall, high temporal‐resolution sampling over a relatively large area (<500 km2) revealed relatively small‐scale spatial variability (on the order of 5–10 km) of hurricane impacts to sediment structure. These observations demonstrate a critical limitation for accurately predicting changes to coastal sediment dynamics in the face of a changing climate and its impact on tropical cyclones.  more » « less
Award ID(s):
2501206
PAR ID:
10582553
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Journal of Geophysical Research: Oceans
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
129
Issue:
7
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tropical cyclones erode and remobilize coastal sediments but their impact on the deep ocean remains unclear. Hurricane‐driven transport of carbonates and associated materials from reef carbonate platforms to the deep ocean has important implications for carbon storage, deep ecosystems and ocean chemistry as carbonate platform reef‐sourced aragonite and high‐Mg calcite (HMC) may dissolve and contribute to deep water total alkalinity. Here we describe two hurricane‐driven resuspension events where deep sediment plumes from the Bermuda Pedestal (NW Atlantic) were advected to deep waters surrounding the Oceanic Flux Program (OFP) mooring site, ∼75 km southeast of Bermuda. Hurricanes Fabian (Cat. 3, 2003) and Igor (Cat. 1, 2010) generated large near‐inertial waves propagating to >750 m depths, leading to widespread sediment resuspension from the Pedestal. Following Fabian, carbonate fluxes at the OFP site increased 15‐fold, 32‐fold, and 6‐fold at 500, 1,500 and 3,200 m, respectively, with the 1,500 m flux equivalent to the total annual carbonate flux. OFP traps similarly captured a large detrital carbonate plume following Igor; here, the plume was shallower and persisted longer. Microscopy, geochemistry, and mineralogy confirmed that both plumes consisted of fine‐grained shallow‐water detrital carbonates alongside other materials accumulated on the Pedestal including phosphorus, lithogenic, authigenic, and pollutant elements. Clay‐sized particles (<4 μm) in both plumes exhibited high contents of lithogenic and authigenic elements, and Zn, Cd, and V, facilitating their transport over long distances. Grain‐size, elemental, and lipid composition indicated that plumes intercepted at different depths originated from different source areas on the Pedestal. 
    more » « less
  2. Tropical cyclones can severely disturb shallow, continental shelf ecosystems, affecting habitat structure, diversity, and ecosystem services. This study examines the impacts of Hurricane Ian on the Southwest Florida Shelf by assessing water quality, substrate type, and epibenthic and microbial community characteristics at eight sites (3 to 20 m in depth) before and after Ian’s passage in 2022. Hurricane Ian drastically changed substrate type and biotic cover, scouring away epibenthos and/or burying hard substrates in mud and sand, especially at mid depth (10 m) sites (92–98% loss). Following Hurricane Ian, the greatest losses were observed in fleshy macroalgae (58%), calcareous green algae (100%), seagrass (100%), sessile invertebrates (77%), and stony coral communities (71%), while soft coral (17%) and sponge communities (45%) were more resistant. After Ian, turbidity, chromophoric dissolved organic matter, and dissolved inorganic nitrogen and phosphorus increased at most sites, while total nitrogen, total phosphorus, and silica decreased. Microbial communities changed significantly post Ian, with estuary-associated taxa expanding further offshore. The results show that the shelf ecosystem is highly susceptible to disturbances from waves, deposition and erosion, and water quality changes caused by mixing and coastal discharge. More routine monitoring of this environment is necessary to understand the long-term patterns of these disturbances, their interactions, and how they influence the resilience and recovery processes of shelf ecosystems. 
    more » « less
  3. This dataset consists of infaunal community composition and sediment grain size distribution, porosity, and organic content of sediment cores in addition to bottom water salinity, dissolved oxygen, and temperature collected from 9 sites at 5, 12 and 20 meters depth in the Northern Gulf of Mexico off the Alabama (USA) coast before and after Hurricane Sally, which occurred in 2020. 
    more » « less
  4. Predicting the responses of animals to environmental changes is a fundamental goal of ecology and is necessary for conservation and management of species. While most studies focus on relatively gradual changes, extreme events may have lasting impacts on populations. Animals respond to major disturbances such as hurricanes by seeking shelter, migrating, or they may fail to respond appropriately. We assessed the effects of Hurricane Irma in 2017 on the behavior and survival of juvenile bull sharks (Carcharhinus leucas) within a nursery of the Florida coastal Everglades using long-term acoustic telemetry monitoring. Most of our tagged sharks (n = 14) attempted to leave the shallow waters of the Shark River Estuary before the hurricane strike, but individuals varied in the timing and success of their movements. Eight bull sharks left within hours or days before the hurricane, but three left more than a week in advance. Nine of 11 bull sharks (~ 82%) eventually returned to the array within weeks or months of the storm. Six of these returning individuals were detected in a different coastal array in nearshore waters ca. 80 km away from the mouth of the estuary during their absence. The remaining three bull sharks moved downstream relatively late (after the hurricane) and may have died. We used binomial generalized linear mixed models to estimate the probability of presence within the array as a function of several environmental variables. Departure from the array was predicted by declining barometric pressure, increasing rate of change in pressure, and potentially fluctuations in river stage. Juvenile bull sharks may weigh multiple environmental cues, perceived predation risk, their own physical size, and shifting prey resources when making decisions during and after hurricanes. 
    more » « less
  5. This dataset consists of profiles of sediment grain size distribution, porosity, and organic content in addition to bottom water salinity and temperature collected from 9 sites at 5, 12 and 20 meters depth in the Northern Gulf of Mexico off the Alabama (USA) coast before and after Hurricane Sally (2020). 
    more » « less