Abstract Visible light‐induced Pd catalysis has emerged as a promising subfield of photocatalysis. The hybrid nature of Pd radical species has enabled a wide array of radical‐based transformations otherwise challenging or unknown via conventional Pd chemistry. In parallel to the ongoing pursuit of alternative, readily available radical precursors, notable discoveries have demonstrated that photoexcitation can alter not only oxidative addition but also other elementary steps. This Minireview highlights the recent progress in this area.
more »
« less
This content will become publicly available on April 11, 2026
A 3–D Printed Millifluidic Reactor for Continuous Flow Photocatalysis in the Teaching Laboratory
An experiment designed to teach principles of continuous flow technologies for photocatalysis is 10 described as a part of a two-week summer camp program for high school students. Students learned about green chemistry, photocatalysis, flow chemistry, and the role of 3–D printing for the design and production of custom millifluidic reactors. Students examined reactor designs which differed in terms of residence times and mixing capabilities. Such evaluation was based on the combination of blue and yellow dyes, followed by running a photocatalytic thiol-ene reaction on gram-scale.
more »
« less
- Award ID(s):
- 2154668
- PAR ID:
- 10582764
- Publisher / Repository:
- ChemRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- University of Michigan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Heterogeneous photocatalysis combines the benefits of light‐mediated chemistry with that of a catalytic platform that facilitates re‐use of (often expensive) photocatalysts. This provides significant opportunities towards more economical, sustainable, safe, and user‐friendly chemical syntheses of both small and macromolecular compounds. This contribution outlines recent developments in the design of heterogenous photocatalysts and their use to mediate polymerizations. We outline four classes of heterogeneous photocatalysts in detail: Nanoparticles, conjugated and non‐conjugated polymer networks, metal‐organic frameworks (MOFs), and functionalized solid supports.more » « less
-
Abstract Developing and using scientific models is an important scientific practice for science students. Undergraduate chemistry curricula are often centered on established disciplinary models, and assessments typically provide students with opportunities to use these models to predict and explain chemical phenomena. However, traditional curricula generally provide few opportunities for students to consider the epistemic nature of models and the process of modeling. To gain a sense of how introductory chemistry students understand model changeability, model multiplicity, the evaluation of models, and the process of modeling, we use a construct‐mapping approach to characterize the sophistication of students' epistemic knowledge of models and modeling. We present a set of four related construct maps that we developed based on the work of other scholars and empirically validated in an undergraduate introductory chemistry setting. We use the construct maps to identify themes in students' responses to an open‐ended survey instrument, the models in chemistry survey, and discuss the implications for teaching.more » « less
-
Mindset is a construct of interest for challenging learning environments, as science courses often are, in that, it has implications for behavioral responses to academic challenges. Previous work examining mindset in science learning contexts has been primarily quantitative in nature, limiting the theoretical basis for mindset perspectives specific to science domains. A few studies in physics education research have revealed domain-specific complexities applying to the mindset construct that suggest a need to explore undergraduate perspectives on mindset within each science domain. Here we present a multiple case study examining chemistry-specific mindset beliefs of students enrolled in general and organic chemistry lecture courses. A between-case analysis is used to describe six unique perspectives on chemistry mindset beliefs. This analysis revealed that students’ beliefs about their own ability to improve in chemistry intelligence or regarding chemistry-specific cognitive abilities did not consistently match their views on the potential for change for other students in chemistry. The nature of the abilities themselves (whether they were naturally occurring or developed with effort), and the presence of a natural inclination toward chemistry learning were observed to play a role in students’ perspectives. The findings from this analysis are used to propose a more complex model for chemistry-specific mindset beliefs to inform future work.more » « less
-
Students face various challenges in organic chemistry, including learning complex organic chemistry concepts, applying them to solve problems, and navigating curved arrow notation to depict organic chemistry mechanisms. Given these challenges, many chemistry education practitioners and researchers have focused their efforts on implementing and assessing pedagogical practices that can produce positive outcomes for all students. In this chapter, we describe flipped classroom pedagogy as an evidence-based practice in organic chemistry that has improved student outcomes and addressed learning challenges in the course. We also review key aspects of this practice. In addition, we focus on group activities since they are a common component of flipped classrooms. We will present a case study that analyzes students' reasoning through dialogue when they were engaged in a group quiz activity that was a component of a flipped organic chemistry course. Through the results of this case study, we will make suggestions for how group activities can be implemented to improve students' reasoning skills in organic chemistry.more » « less
An official website of the United States government
