Abstract Impaired cerebrovascular function contributes to the genesis of age‐related cognitive decline. In this study, the hypothesis is tested that impairments in neurovascular coupling (NVC) responses and brain network function predict cognitive dysfunction in older adults. Cerebromicrovascular and working memory function of healthy young (n= 21, 33.2±7.0 years) and aged (n= 30, 75.9±6.9 years) participants are assessed. To determine NVC responses and functional connectivity (FC) during a working memory (n‐back) paradigm, oxy‐ and deoxyhemoglobin concentration changes from the frontal cortex using functional near‐infrared spectroscopy are recorded. NVC responses are significantly impaired during the 2‐back task in aged participants, while the frontal networks are characterized by higher local and global connection strength, and dynamic FC (p< 0.05). Both impaired NVC and increased FC correlate with age‐related decline in accuracy during the 2‐back task. These findings suggest that task‐related brain states in older adults require stronger functional connections to compensate for the attenuated NVC responses associated with working memory load.
more »
« less
This content will become publicly available on January 1, 2026
Analysis of functional connectivity changes from childhood to old age: A study using HCP-D, HCP-YA, and HCP-A datasets
Abstract We present a new clustering-enabled regression approach to investigate how functional connectivity (FC) of the entire brain changes from childhood to old age. By applying this method to resting-state functional magnetic resonance imaging data aggregated from three Human Connectome Project studies, we cluster brain regions that undergo identical age-related changes in FC and reveal diverse patterns of these changes for different region clusters. While most brain connections between pairs of regions show minimal yet statistically significant FC changes with age, only a tiny proportion of connections exhibit practically significant age-related changes in FC. Among these connections, FC between region clusters from the same functional network tends to decrease over time, whereas FC between region clusters from different networks demonstrates various patterns of age-related changes. Moreover, our research uncovers sex-specific trends in FC changes. Females show much higher FC mainly within the default mode network, whereas males display higher FC across several more brain networks. These findings underscore the complexity and heterogeneity of FC changes in the brain throughout the lifespan.
more »
« less
- Award ID(s):
- 2242568
- PAR ID:
- 10582773
- Publisher / Repository:
- MIT Press
- Date Published:
- Journal Name:
- Imaging Neuroscience
- Volume:
- 3
- ISSN:
- 2837-6056
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract White matter structural connections are likely to support flow of functional activation or functional connectivity. While the relationship between structural and functional connectivity profiles, here called SC-FC coupling, has been studied on a whole-brain, global level, few studies have investigated this relationship at a regional scale. Here we quantify regional SC-FC coupling in healthy young adults using diffusion-weighted MRI and resting-state functional MRI data from the Human Connectome Project and study how SC-FC coupling may be heritable and varies between individuals. We show that regional SC-FC coupling strength varies widely across brain regions, but was strongest in highly structurally connected visual and subcortical areas. We also show interindividual regional differences based on age, sex and composite cognitive scores, and that SC-FC coupling was highly heritable within certain networks. These results suggest regional structure-function coupling is an idiosyncratic feature of brain organisation that may be influenced by genetic factors.more » « less
-
Many studies in neuroscience have focused on interpreting brain activity using functional connectivity (FC). The most widely used approach for measuring FC is based on linear correlation (e.g., the Pearson correlation), where the temporal cofluctuations between functional brain regions are computed. However, such approaches ignore nonlinear dependencies among regions that might carry distinctive information across groups of subjects. In this study, we offer a deep learning-based approach that also captures nonlinear temporal relationships between brain networks. Our approach consists of two main parts: an encoder that learns domainspecific embeddings of time courses estimated from independent component analysis (ICA) and a similarity metric that measures the similarities between the embeddings. We call such similarities as nonlinear functional relationships between networks. Our findings on a large dataset (including above 11k normal control subjects) suggest that male subjects exhibit stronger nonlinear network-network relationships than female subjects in most cases. Furthermore, we observe that, unlike FC, our approach could capture some intra-network relationships, especially between cognitive control and visual networks, which are significantly different between males and females, suggesting that our approach can provide a complementary interpretation of the functional brain activity to FC.more » « less
-
ABSTRACT Schizophrenia (SZ) patients exhibit abnormal static and dynamic functional connectivity across various brain domains. We present a novel approach based on static and dynamic inter‐network connectivity entropy (ICE), which represents the entropy of a given network's connectivity to all the other brain networks. This novel approach enables the investigation of how connectivity strength is heterogeneously distributed across available targets in both SZ patients and healthy controls. We analyzed fMRI data from 151 SZ patients and 160 demographically matched healthy controls (HC). Our assessment encompassed both static and dynamic ICE, revealing significant differences in the heterogeneity of connectivity levels across available functional brain networks between SZ patients and HC. These networks are associated with subcortical (SC), auditory (AUD), sensorimotor (SM), visual (VIS), cognitive control (CC), default mode network (DMN), and cerebellar (CB) functional brain domains. Elevated ICE observed in individuals with SZ suggests that patients exhibit significantly higher randomness in the distribution of time‐varying connectivity strength across functional regions from each source network, compared to HC. C‐means fuzzy clustering analysis of functional ICE correlation matrices revealed that SZ patients exhibit significantly higher occupancy weights in clusters with weak, low‐scale functional entropy correlation, while the control group shows greater occupancy weights in clusters with strong, large‐scale functional entropy correlation. K‐means clustering analysis on time‐indexed ICE vectors revealed that cluster with highest ICE have higher occupancy rates in SZ patients whereas clusters characterized by lowest ICE have larger occupancy rates for control group. Furthermore, our dynamic ICE approach revealed that in HC, the brain primarily communicates through complex, less structured connectivity patterns, with occasional transitions into more focused patterns. Individuals with SZ are significantly less likely to attain these more focused and structured transient connectivity patterns. The proposed ICE measure presents a novel framework for gaining deeper insight into mechanisms of healthy and diseased brain states and represents a useful step forward in developing advanced methods to help diagnose mental health conditions.more » « less
-
Cohen Kadosh, Roi (Ed.)Sustained attention (SA) and working memory (WM) are critical processes, but the brain networks supporting these abilities in development are unknown. We characterized the functional brain architecture of SA and WM in 9- to 11-year-old children and adults. First, we found that adult network predictors of SA generalized to predict individual differences and fluctuations in SA in youth. A WM model predicted WM performance both across and within children—and captured individual differences in later recognition memory—but underperformed in youth relative to adults. We next characterized functional connections differentially related to SA and WM in youth compared to adults. Results revealed 2 network configurations: a dominant architecture predicting performance in both age groups and a secondary architecture, more prominent for WM than SA, predicting performance in each age group differently. Thus, functional connectivity (FC) predicts SA and WM in youth, with networks predicting WM performance differing more between youths and adults than those predicting SA.more » « less