skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Supervised Contrastive Learning-based Analysis of rs-tMRI Data Captures Gender Differences in Nonlinear Functional Network Coupling
Many studies in neuroscience have focused on interpreting brain activity using functional connectivity (FC). The most widely used approach for measuring FC is based on linear correlation (e.g., the Pearson correlation), where the temporal cofluctuations between functional brain regions are computed. However, such approaches ignore nonlinear dependencies among regions that might carry distinctive information across groups of subjects. In this study, we offer a deep learning-based approach that also captures nonlinear temporal relationships between brain networks. Our approach consists of two main parts: an encoder that learns domainspecific embeddings of time courses estimated from independent component analysis (ICA) and a similarity metric that measures the similarities between the embeddings. We call such similarities as nonlinear functional relationships between networks. Our findings on a large dataset (including above 11k normal control subjects) suggest that male subjects exhibit stronger nonlinear network-network relationships than female subjects in most cases. Furthermore, we observe that, unlike FC, our approach could capture some intra-network relationships, especially between cognitive control and visual networks, which are significantly different between males and females, suggesting that our approach can provide a complementary interpretation of the functional brain activity to FC.  more » « less
Award ID(s):
2112455
PAR ID:
10569569
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-7281-2782-8
Page Range / eLocation ID:
4641 to 4644
Format(s):
Medium: X
Location:
Glasgow, Scotland, United Kingdom
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, the relationship between functional and structural brain networks is investigated by training a graph encoder-decoder system to learn the mapping from brain structural connectivity (SC) to functional connectivity (FC). Our work leverages a graph convolutional network (GCN) model in the encoder which integrates both nodal attributes and the network topology information to generate new graph representations in lower dimensions. Using brain SC graphs as inputs, the novel GCN-based encoder-decoder system manages to account for both direct and indirect interactions between brain regions to reconstruct the empirical FC networks. In doing so, the latent variables within the system (i.e., the learnt low-dimensional embeddings) capture important information regarding the relation between functional and structural networks. By decomposing the reconstructed functional networks in terms of the output of each graph convolution filter, we can extract those brain regions which contribute most to the generation of FC networks from their SC counterparts. Experiments on a large population of healthy subjects from the Human Connectome Project show our model can learn a generalizable and interpretable SC-FC relationship. Overall, results here support the promising prospect of using GCNs to discover more about the complex nature of human brain activity and function. 
    more » « less
  2. null (Ed.)
    In this paper, we propose a supervised graph representation learning method to model the relationship between brain functional connectivity (FC) and structural connectivity (SC) through a graph encoder-decoder system. The graph convolutional network (GCN) model is leveraged in the encoder to learn lower-dimensional node representations (i.e. node embeddings) integrating information from both node attributes and network topology. In doing so, the encoder manages to capture both direct and indirect interactions between brain regions in the node embeddings which later help reconstruct empirical FC networks. From node embeddings, graph representations are learnt to embed the entire graphs into a vector space. Our end-to-end model utilizes a multi-objective loss function to simultaneously learn node representations for FC network reconstruction and graph representations for subject classification. The experiment on a large population of non-drinkers and heavy drinkers shows that our model can provide a characterization of the population pattern in the SC-FC relationship, while also learning features that capture individual uniqueness for subject classification. The identified key brain subnetworks show significant between-group difference and support the promising prospect of GCN-based graph representation learning on brain networks to model human brain activity and function. 
    more » « less
  3. Giove, Federico (Ed.)
    Approaches studying the dynamics of resting-state functional magnetic resonance imaging (rs-fMRI) activity often focus on time-resolved functional connectivity (tr-FC). While many tr-FC approaches have been proposed, most are linear approaches, e.g. computing the linear correlation at a timestep or within a window. In this work, we propose to use a generative non-linear deep learning model, a disentangled variational autoencoder (DSVAE), that factorizes out window-specific (context) information from timestep-specific (local) information. This has the advantage of allowing our model to capture differences at multiple temporal scales. We find that by separating out temporal scales our model’s window-specific embeddings, or as we refer to them, context embeddings, more accurately separate windows from schizophrenia patients and control subjects than baseline models and the standard tr-FC approach in a low-dimensional space. Moreover, we find that for individuals with schizophrenia, our model’s context embedding space is significantly correlated with both age and symptom severity. Interestingly, patients appear to spend more time in three clusters, one closer to controls which shows increased visual-sensorimotor, cerebellar-subcortical, and reduced cerebellar-visual functional network connectivity (FNC), an intermediate station showing increased subcortical-sensorimotor FNC, and one that shows decreased visual-sensorimotor, decreased subcortical-sensorimotor, and increased visual-subcortical domains. We verify that our model captures features that are complementary to - but not the same as - standard tr-FC features. Our model can thus help broaden the neuroimaging toolset in analyzing fMRI dynamics and shows potential as an approach for finding psychiatric links that are more sensitive to individual and group characteristics. 
    more » « less
  4. null (Ed.)
    Abstract Functional connectivity (FC) describes the statistical dependence between neuronal populations or brain regions in resting-state fMRI studies and is commonly estimated as the Pearson correlation of time courses. Clustering or community detection reveals densely coupled sets of regions constituting resting-state networks or functional systems. These systems manifest most clearly when FC is sampled over longer epochs but appear to fluctuate on shorter timescales. Here, we propose a new approach to reveal temporal fluctuations in neuronal time series. Unwrapping FC signal correlations yields pairwise co-fluctuation time series, one for each node pair or edge, and allows tracking of fine-scale dynamics across the network. Co-fluctuations partition the network, at each time step, into exactly two communities. Sampled over time, the overlay of these bipartitions, a binary decomposition of the original time series, very closely approximates functional connectivity. Bipartitions exhibit characteristic spatiotemporal patterns that are reproducible across participants and imaging runs, capture individual differences, and disclose fine-scale temporal expression of functional systems. Our findings document that functional systems appear transiently and intermittently, and that FC results from the overlay of many variable instances of system expression. Potential applications of this decomposition of functional connectivity into a set of binary patterns are discussed. 
    more » « less
  5. Abstract We present a new clustering-enabled regression approach to investigate how functional connectivity (FC) of the entire brain changes from childhood to old age. By applying this method to resting-state functional magnetic resonance imaging data aggregated from three Human Connectome Project studies, we cluster brain regions that undergo identical age-related changes in FC and reveal diverse patterns of these changes for different region clusters. While most brain connections between pairs of regions show minimal yet statistically significant FC changes with age, only a tiny proportion of connections exhibit practically significant age-related changes in FC. Among these connections, FC between region clusters from the same functional network tends to decrease over time, whereas FC between region clusters from different networks demonstrates various patterns of age-related changes. Moreover, our research uncovers sex-specific trends in FC changes. Females show much higher FC mainly within the default mode network, whereas males display higher FC across several more brain networks. These findings underscore the complexity and heterogeneity of FC changes in the brain throughout the lifespan. 
    more » « less