Abstract Wildfire frequency has increased in the Western US over recent decades, driven by climate change and a legacy of forest management practices. Consequently, human structures, health, and life are increasingly at risk due to wildfires. Furthermore, wildfire smoke presents a growing hazard for regional and national air quality. In response, many scientific tools have been developed to study and forecast wildfire behavior, or test interventions that may mitigate risk. In this study, we present a retrospective analysis of 1 month of the 2020 Northern California wildfire season, when many wildfires with varying environments and behavior impacted regional air quality. We simulated this period using a coupled numerical weather prediction model with online atmospheric chemistry, and compare two approaches to representing smoke emissions: an online fire spread model driven by remotely sensed fire arrival times and a biomass burning emissions inventory. First, we quantify the differences in smoke emissions and timing of fire activity, and characterize the subsequent impact on estimates of smoke emissions. Next, we compare the simulated smoke to surface observations and remotely sensed smoke; we find that despite differences in the simulated smoke surface concentrations, the two models achieve similar levels of accuracy. We present a detailed comparison between the performance and relative strengths of both approaches, and discuss potential refinements that could further improve future simulations of wildfire smoke. Finally, we characterize the interactions between smoke and meteorology during this event, and discuss the implications that increases in regional smoke may have on future meteorological conditions.
more »
« less
Investigating the vertical extent of the 2023 summer Canadian wildfire impacts with satellite observations
Abstract. Pyrocumulonimbus clouds (pyroCbs) generated by intense wildfires can serve as a direct pathway for the injection of aerosols and gaseous pollutants into the lower stratosphere, resulting in significant chemical, radiative, and dynamical changes. Canada experienced an extremely severe wildfire season in 2023, with a total area burned that substantially exceeded those of previous events known to have impacted the stratosphere (such as the 2020 Australian fires). This season also had record-high pyroCb activity, which raises the question of whether the 2023 Canadian event resulted in significant stratospheric perturbations. Here, we investigate this anomalous wildfire season using retrievals from multiple satellite instruments, ACE-FTS (Atmospheric Chemistry Experiment – Fourier transform spectrometer), OMPS LP (Ozone Mapping and Profiler Suite Limb Profiler), and MLS (Microwave Limb Sounder), to determine the vertical extents of the wildfire smoke along with chemical signatures of biomass burning. These data show that smoke primarily reached the upper troposphere, and only a nominal amount managed to penetrate the tropopause. Only a few ACE-FTS occultations captured elevated abundances of biomass-burning products in the lowermost stratosphere. OMPS LP aerosol measurements also indicate that any smoke that made it past the tropopause did not last long enough or reach high enough to significantly perturb stratospheric composition. While this work focuses on Canadian wildfires given the extensive burned area, pyroCbs at other longitudes (e.g., Siberia) are also captured in the compositional analysis. These results highlight that despite the formation of many pyroCbs in major wildfires, those capable of penetrating the tropopause are extremely rare; this in turn means that even a massive area burned is not necessarily an indicator of stratospheric effects.
more »
« less
- Award ID(s):
- 2316980
- PAR ID:
- 10582810
- Publisher / Repository:
- European Geosciences Union
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 24
- Issue:
- 20
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 11727 to 11736
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Small cumulus clouds over the western United States were measured via airborne instruments during the wildfire season in summer of 2018. Statistics of the sampled clouds are presented and compared to smoke aerosol properties. Cloud droplet concentrations were enhanced in regions impacted by biomass burning smoke, at times exceeding 3,000 cm−3. Images and elemental composition of individual smoke particles and cloud droplet residuals are presented and show that most are dominantly organic, internally mixed with some inorganic elements. Despite their high organic content and relatively low hygroscopicity, on average about half of smoke aerosol particles >80 nm diameter formed cloud droplets. This reduced cloud droplet size in small, smoke‐impacted clouds. A number of complex and competing climatic impacts may result from wide‐spread reductions in cloud droplet size due to wildfires prevalent across the region during summer months.more » « less
-
The impacts of wildfires along the wildland urban interface (WUI) on atmospheric particulate concentrations and composition are an understudied source of air pollution exposure. To assess the residual impacts of the 2021 Marshall Fire (Colorado), a wildfire that predominantly burned homes and other human-made materials, on homes within the fire perimeter that escaped the fire, we performed a combination of fine particulate matter (PM2.5) filter sampling and chemical analysis, indoor dust collection and chemical analysis, community scale PurpleAir PM2.5 analysis, and indoor particle number concentration measurements. Following the fire, the chemical speciation of dust collected in smoke-affected homes in the burned zone showed elevated concentrations of the biomass burning marker levoglucosan (medianlevo = 4147 ng g−1), EPA priority toxic polycyclic aromatic hydrocarbons (median Σ16PAH = 1859.3 ng g−1), and metals (median Σ20Metals = 34.6 mg g−1) when compared to samples collected in homes outside of the burn zone 6 months after the fire. As indoor dust particles are often resuspended and can become airborne, the enhanced concentration of hazardous metals and organics within dust samples may pose a threat to human health. Indoor airborne particulate organic carbon (median = 1.91 μg m−3), particulate elemental carbon (median = .02 μg m−3), and quantified semi-volatile organic species in PM2.5 were found in concentrations comparable to ambient air in urban areas across the USA. Particle number and size distribution analysis at a heavily instrumented supersite home located immediately next to the burned area showed indoor particulates in low concentrations (below 10 μg m−3) across various sizes of PM (12 nm–20 μm), but were elevated by resuspension from human activity, including cleaning.more » « less
-
Massive Australian wildfires lofted smoke directly into the stratosphere in the austral summer of 2019/20. The smoke led to increases in optical extinction throughout the midlatitudes of the southern hemisphere that rivalled substantial volcanic perturbations. Previous studies have assumed that the smoke became coated with sulfuric acid and water and would deplete the ozone layer through heterogeneous chemistry on those surfaces, as is routinely observed following volcanic enhancements of the stratospheric sulfate layer. Here, observations of extinction and reactive nitrogen species from multiple independent satellites that sampled the smoke region are compared to one another and to model calculations. The data display a strong decrease in reactive nitrogen concentrations with increased aerosol extinction in the stratosphere, which is a known fingerprint for key heterogeneous chemistry on sulfate/H 2 O particles (specifically the hydrolysis of N 2 O 5 to form HNO 3 ). This chemical shift affects not only reactive nitrogen but also chlorine and reactive hydrogen species and is expected to cause midlatitude ozone layer depletion. Comparison of the model ozone to observations suggests that N 2 O 5 hydrolysis contributed to reduced ozone, but additional chemical and/or dynamical processes are also important. These findings suggest that if wildfire smoke injection into the stratosphere increases sufficiently in frequency and magnitude as the world warms due to climate change, ozone recovery under the Montreal Protocol could be impeded, at least sporadically. Modeled austral midlatitude total ozone loss was about 1% in March 2020, which is significant compared to expected ozone recovery of about 1% per decade.more » « less
-
Abstract The inorganic chlorine (Cly) and odd nitrogen (NOy) chemical families influence stratospheric O3. In January 2020 Australian wildfires injected record‐breaking amounts of smoke into the southern stratosphere. Within 1–2 months ground‐based and satellite observations showed Clyand NOywere repartitioned. By May, lower stratospheric HCl columns declined by ∼30% and ClONO2columns increased by 40%–50%. The Clyperturbations began and ended near the equinoxes, increased poleward, and peaked at the winter solstice. NO2decreased from February to April, consistent with sulfate aerosol reactions, but returned to typical values by June ‐ months before the Clyrecovery. Transport tracers show that dynamics not chemistry explains most of the observed O3decrease after April, with no significant transport earlier. Simulations assuming wildfire smoke behaves identically to sulfate aerosols couldn't reproduce observed Clychanges, suggesting they have different composition and chemistry. This undermines our ability to predict ozone in a changing climate.more » « less