skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 16, 2026

Title: Synergistic Photoenzymatic Anti-Markovnikov Hydroarylation of Olefins via Heteroaryl Radical Intermediates
Heteroaromatic alkylations are indispensable reactions for synthesizing biologically active molecules. The anti-Markovnikov hydroarylation of olefins using heteroaryl halides furnishes the product as a single regioisomer; however, catalytic variants are ineffective at controlling the stereochemical outcome of these reactions. Here, we report a synergistic photoenzymatic hydroarylation of olefins using flavin-dependent “ene”-reductases with ruthenium photoredox catalysts. Enzyme homologues were identified, which provide access to both product enantiomers in greater than 80% yield with up to 99:1 er. This method is effective for styrenyl- and unactivated alkenes, highlighting the generality of this approach. The highest yielding system involves a carboxylated photocatalyst with increased affinity for the enzyme. This work expands the types of radical intermediates that enzymes can use for stereoselective intermolecular coupling reactions.  more » « less
Award ID(s):
2342328
PAR ID:
10582923
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of the American Chemical Society
Date Published:
Journal Name:
Journal of the American Chemical Society
ISSN:
0002-7863
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cytochrome P450 OleT is a fatty acid decarboxylase that catalyzes the production of olefins with biofuel and synthetic applications. However, the relatively sluggish catalytic efficiency of the enzyme limits its applications. Here, we report the application of a novel class of benzene containing small molecules to improve the OleT activity. The UV‐Vis spectroscopy study and molecular docking results confirmed the high proximity of the small molecules to the heme group of OleT. Up to 6‐fold increase of product yield has been achieved in the small molecule‐modulated enzymatic reactions. Our work thus sheds the light to the application of small molecules to increase the OleT catalytic efficiency, which could be potentially used for future olefin productions. 
    more » « less
  2. null (Ed.)
    Abstract Halocyclization of alkenes is a powerful bond-forming tool in synthetic organic chemistry and a key step in natural product biosynthesis, but catalyzing halocyclization with high enantioselectivity remains a challenging task. Identifying suitable enzymes that catalyze enantioselective halocyclization of simple olefins would therefore have significant synthetic value. Flavin-dependent halogenases (FDHs) catalyze halogenation of arene and enol(ate) substrates. Herein, we reveal that FDHs engineered to catalyze site-selective aromatic halogenation also catalyze non-native bromolactonization of olefins with high enantioselectivity and near-native catalytic proficiency. Highly selective halocyclization is achieved by characterizing and mitigating the release of HOBr from the FDH active site using a combination of reaction optimization and protein engineering. The structural origins of improvements imparted by mutations responsible for the emergence of halocyclase activity are discussed. This expansion of FDH catalytic activity presages the development of a wide range of biocatalytic halogenation reactions. 
    more » « less
  3. Rational design of catalysts for selective conversion of alcohols to olefins is key since product selectivity remains an issue due to competing etherification reactions. Using first principles calculations and chemical rules, we designed novel metal–oxide-protected metal nanoclusters (M 13 X 4 O 12 , with M = Cu, Ag, and Au and X = Al, Ga, and In) exhibiting strong Lewis acid sites on their surface, active for the selective formation of olefins from alcohols. These symmetrical nanocatalysts, due to their curvature, show unfavorable etherification chemistries, while favoring the olefin production. Furthermore, we determined that water removal and regeneration of the nanocatalysts is more feasible compared to the equivalent strong acid sites on solid acids used for alcohol dehydration. Our results demonstrate an exceptional stability of these new nanostructures with the most energetically favorable being Cu-based. Thus, the high selectivity and stability of these in-silico-predicted novel nanoclusters ( e.g. Cu 13 Al 4 O 12 ) make them attractive catalysts for the selective dehydration of alcohols to olefins. 
    more » « less
  4. null (Ed.)
    Here, we show that C 4 –C 12 linear olefins, including linear alpha olefins, can be selectively produced from ethylene over a stable cobalt oxide on carbon catalyst. Both bulk and surface cobalt phases are CoO when the catalyst is stable, suggesting CoO is the stable cobalt phase for oligomerization. During the reaction, polyethylene forms in the catalyst pores which influences the product selectivity. The catalyst is more stable at higher temperatures (∼200 °C) likely due to reduction of Co 3 O 4 to CoO while rapid deactivation is observed at lower temperatures ( e.g. , 80–140 °C). The product selectivity can be fit to two different Schulz Flory distributions, one from C 4 to C 10 olefins and one above C 10 olefins, suggesting that transport restrictions influence product selectivity. At 48.3% conversion, product linearities up to C 12 olefins are above 90%, making it the most selective heterogeneous catalyst to linear olefins to date in the absence of activators and/or solvents. 
    more » « less
  5. Abstract One striking feature of enzyme is its controllable ability to trap substrates via synergistic or cooperative binding in the enzymatic pocket, which renders the shape‐selectivity of product by the confined spatial environment. The success of shape‐selective catalysis relies on the ability of enzyme to tune the thermodynamics and kinetics for chemical reactions. In emulation of enzyme's ability, we showcase herein a targeting strategy with the substrate being anchored on the internal pore wall of metal‐organic frameworks (MOFs), taking full advantage of the sterically kinetic control to achieve shape‐selectivity for the reactions. For this purpose, a series of binding site‐accessible metal metalloporphyrin‐frameworks (MMPFs) have been investigated to shed light on the nature of enzyme‐mimic catalysis. They exhibit a different density of binding sites that are well arranged into the nanospace with corresponding distances of opposite binding sites. Such a structural specificity results in a facile switch in selectivity from an exclusive formation of the thermodynamically stable product to the kinetic product. Thus, the proposed targeting strategy, based on the combination of porous materials and binding events, paves a new way to develop highly efficient heterogeneous catalysts for shifting selectivity. 
    more » « less