skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Engineering electro-crystallization orientation and surface activation in wide-temperature zinc ion supercapacitors
Abstract Matching the capacity of the anode and cathode is essential for maximizing electrochemical cell performance. This study presents two strategies to balance the electrode utilization in zinc ion supercapacitors, by decreasing dendritic loss in the zinc anode while increasing the capacity of the activated carbon cathode. The anode current collector was modified with copper nanoparticles to direct zinc plating orientation and minimize dendrite formation, improving the Coulombic efficiency and cycle life. The cathode was activated by an electrolyte reaction to increase its porosity and gravimetric capacity. The full cell delivered a specific energy of 192 ± 0.56 Wh kg−1at a specific power of 1.4 kW kg−1, maintaining 84% capacity after 50,000 full charge-discharge cycles up to 2 V. With a cumulative capacity of 19.8 Ah cm−2surpassing zinc ion batteries, this device design is particularly promising for high-endurance applications, including un-interruptible power supplies and energy-harvesting systems that demand frequent cycling.  more » « less
Award ID(s):
2312715 2120701
PAR ID:
10583085
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Springer
Date Published:
Journal Name:
Nature Communications
Volume:
16
Issue:
1
ISSN:
2041-1723
Page Range / eLocation ID:
3597
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sodium all‐solid‐state batteries (NaSSBs) with an alloy‐type anode (e.g., Sn and Sb) offer superior capacity and energy density compared to hard carbon anode. However, the irreversible loss of Na+at the alloy anode during the initial cycle results in diminished capacity and stability, impairing full‐cell performance. This study presents an easy‐to‐implement cathode presodiation strategy by employing a Na‐rich material to address these challenges. Leveraging the high theoretical capacity and suitable voltage window, Na2S is chosen as the Na donor, which is activated by creating a mixed electron‐ion conducting network, delivering a high capacity of 511.7 mAh g−1. By adding a small amount (i.e., 3 wt.%) of Na2S to the cathode composite, a NaCrO2|| Sn full cell demonstrated capacity improvement from 90.8 to 118.2 mAh g−1(based on cathode mass). The capacity‐balanced full cell can thus cycle to more than 300 times with >90% capacity retention. This work provides a practical solution to enhance the full‐cell performance and advance the transformation from half‐cell to full‐cell applications of NaSSBs. 
    more » « less
  2. Abstract It remains a challenge to design aqueous electrolytes to secure the complete reversibility of zinc metal anodes. The concentrated water‐in‐salt electrolytes, e.g., 30 m ZnCl2, are promising candidates to address the challenges of the Zn metal anode. However, the pure 30 m ZnCl2electrolyte fails to deliver a smooth surface morphology and a practically relevant Coulombic efficiency. Herein, it is reported that a small concentration of vanillin, 5 mg mLwater−1, added to 30 m ZnCl2transforms the reversibility of Zn metal anode by eliminating dendrites, lowering the Hammett acidity, and forming an effective solid electrolyte interphase. The presence of vanillin in the electrolyte enables the Zn metal anode to exhibit a high Coulombic efficiency of 99.34% at a low current density of 0.2 mA cm−2, at which the impacts of the hydrogen evolution reaction are allowed to play out. Using this new electrolyte, a full cell Zn metal battery with an anode/cathode capacity (N/P) ratio of 2:1 demonstrates no capacity fading over 800 cycles. 
    more » « less
  3. Du, Cheng (Ed.)
    Abstract With the increasing demand for developing large‐energy‐density and safe batteries, a reliable lithium metal as an anode becomes more and more important in various lithium metal and solid‐state batteries. On the basis of better lithium regulation from MXene, a lithiophilic lithium metal surface is designed by introducing a 2D hybrid coating that consists of a thin covalent organic framework (COF‐1) modified MXene layer (denoted as COF‐MXene‐Li). The abundant lithiophilic boroxine sites on 2D COF‐1 attract lithium ions while the MXene further regulates lithium homogeneous nucleation and growth, thus preventing dendrite formation. The coin cell battery paired with LiNi0.8Mn0.1Co0.1O2(NMC811) as cathode material displays 17% more capacity retention compared with pure lithium metal after 400 cycles at 0.5C.Over 81.4% capacity retention along with 99.96% Coulombic efficiency (CE) of a 1.0 Ah pouch cell versus LiNi0.8Co0.15Al0.05O2(NCA) after 250 cycles is received. The assembled 1.6 Ah pouch cell with NMC811 show an energy density of up to 366.7 Wh Kg−1and an actual energy density based on the whole cell of up to 339.7 Wh Kg−1. The improved cycling stability particularly in pouch cells opens broad applications for this hybrid coating modified lithium metal as anode electrode in a variety of large‐energy‐density battery systems. 
    more » « less
  4. Ever-increasing demands for energy, particularly being environmentally friendly have promoted the transition from fossil fuels to renewable energy.1Lithium-ion batteries (LIBs), arguably the most well-studied energy storage system, have dominated the energy market since their advent in the 1990s.2However, challenging issues regarding safety, supply of lithium, and high price of lithium resources limit the further advancement of LIBs for large-scale energy storage applications.3Therefore, attention is being concentrated on an alternative electrochemical energy storage device that features high safety, low cost, and long cycle life. Rechargeable aqueous zinc-ion batteries (ZIBs) is considered one of the most promising alternative energy storage systems due to the high theoretical energy and power densities where the multiple electrons (Zn2+) . In addition, aqueous ZIBs are safer due to non-flammable electrolyte (e.g., typically aqueous solution) and can be manufactured since they can be assembled in ambient air conditions.4As an essential component in aqueous Zn-based batteries, the Zn metal anode generally suffers from the growth of dendrites, which would affect battery performance in several ways. Second, the led by the loose structure of Zn dendrite may reduce the coulombic efficiency and shorten the battery lifespan.5 Several approaches were suggested to improve the electrochemical stability of ZIBs, such as implementing an interfacial buffer layer that separates the active Zn from the bulk electrolyte.6However, the and thick thickness of the conventional Zn metal foils remain a critical challenge in this field, which may diminish the energy density of the battery drastically. According to a theretical calculation, the thickness of a Zn metal anode with an areal capacity of 1 mAh cm-2is about 1.7 μm. However, existing extrusion-based fabrication technologies are not capable of downscaling the thickness Zn metal foils below 20 μm. Herein, we demonstrate a thickness controllable coating approach to fabricate an ultrathin Zn metal anode as well as a thin dielectric oxide separator. First, a 1.7 μm Zn layer was uniformly thermally evaporated onto a Cu foil. Then, Al2O3, the separator was deposited through sputtering on the Zn layer to a thickness of 10 nm. The inert and high hardness Al2O3layer is expected to lower the polarization and restrain the growth of Zn dendrites. Atomic force microscopy was employed to evaluate the roughness of the surface of the deposited Zn and Al2O3/Zn anode structures. Long-term cycling stability was gauged under the symmetrical cells at 0.5 mA cm-2for 1 mAh cm-2. Then the fabricated Zn anode was paired with MnO2as a full cell for further electrochemical performance testing. To investigate the evolution of the interface between the Zn anode and the electrolyte, a home-developed in-situ optical observation battery cage was employed to record and compare the process of Zn deposition on the anodes of the Al2O3/Zn (demonstrated in this study) and the procured thick Zn anode. The surface morphology of the two Zn anodes after circulation was characterized and compared through scanning electron microscopy. The tunable ultrathin Zn metal anode with enhanced anode stability provides a pathway for future high-energy-density Zn-ion batteries.Obama, B., The irreversible momentum of clean energy.Science2017,355(6321), 126-129.Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013,135(4), 1167-76.Li, C.; Xie, X.; Liang, S.; Zhou, J., Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries.Energy & Environmental Materials2020,3(2), 146-159.Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy2020,70.Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.Nanomicro Lett2022,14(1), 42.Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C., Dendrites in Zn-Based Batteries.Adv Mater2020,32(48), e2001854. Acknowledgment This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS. Figure 1 
    more » « less
  5. Abstract High‐voltage lithium metal batteries with nickel‐rich oxide cathodes (LiNi0.8Co0.1Mn0.1O2, NCM811) represent one of the most promising approaches to achieve high energy density up to 500 Wh kg−1. However, severe interfacial side reactions occur at both NCM811 cathode and lithium anode at ultrahigh voltages (>4.6 V). To address these issues, various electrolytes have been developed, but they still suffer from electrolyte decomposition, leading to moderate voltages and insufficient cycling. Herein, we introduce (3,3,3‐trifluoropropyl)trimethoxy silane (TTMS) as an asymmetrically fluorinated single solvent, which incorporates both strongly solvating (─OCH3) and weakly solvating (─CF3) groups. The designed 2.1 mol L−1(M) LiFSI/TTMS electrolyte achieves excellent compatibility with both NCM811 cathode and Li metal anode due to its unique anion‐dominating solvation structures and inorganic‐rich interphase formation. Consequently, it enables stable cycling in the Li||NCM811 battery at an ultrahigh voltage of 4.8 V, with 84.5% capacity retention after 300 cycles. Even under more aggressive conditions, including high temperature (60 °C) and anode‐less configuration (N/P ratio = 1.76), the Li||NCM811 battery exhibits remarkable capacity retention (>80%) over 300 cycles. This work underscores the effectiveness of electrolyte engineering for developing ultrahigh‐voltage and long‐cycling battery systems. 
    more » « less