In joining Fe-alloys and Cu-containing alloys to access the high strength of steels and corrosion resistance of Cu-alloy, cracking is widely observed due to the significant Cu microsegregation during the solidification process, resulting in an interdendritic Cu-rich liquid film at the end of solidification. By fabricating functionally graded materials (FGMs) that incorporate additional elements like Ni in the transition region between these terminal alloy classes, the hot cracking can be reduced. In the present work, the joining of stainless steel 316L (SS316L) and Monel400 by modifying the Ni concentration in the gradient region was studied. A new hot cracking criterion based on hybrid Scheil-equilibrium approach was developed and validated with monolithic multi-layer samples within the SS316L-Ni-Monel400 three-alloy system and a SS316L to 55/45 wt% SS316L/Ni to Monel400 FGM sample fabricated by direct energy deposition (DED). The new hot cracking criterion, based on the hybrid Scheil-equilibrium approach, is expected to help design FGM paths between other Fe-alloys and Cu-containing alloys as well.
more »
« less
This content will become publicly available on March 1, 2026
Effect of dilution on fabricated functionally graded materials compositions: Modelling and mitigation strategies validated using the Ni-, Fe-, Cu- alloy system
Additive manufacturing (AM) can be used to fabricate functionally graded materials (FGMs) in which composition, and therefore properties, vary spatially within a component. A practical consideration for FGM fabrication is the effects of dilution. In the gradient region of vertically graded FGMs, dilution from the previous layer with a different composition from that being newly deposited can result in the composition of the newly solidified layer deviating from the feedstock composition from the nozzles. In this study, a dilution model for multi-layer FGM samples is proposed and validated experimentally with an Inconel625 (IN625)-Monel400 FGM sample. Factors that affect the deviation from the designed compositional path are discussed and methods for mitigating dilution effects to produce designed path are provided and experimentally demonstrated in a stainless steel 316 L (SS316L)-50/50 wt% SS316L/Ni-Monel400 FGM sample, aiding in precise production of the designed FGM path.
more »
« less
- Award ID(s):
- 2050069
- PAR ID:
- 10583097
- Publisher / Repository:
- Additive Manufacturing
- Date Published:
- Journal Name:
- Additive Manufacturing
- Volume:
- 102
- Issue:
- C
- ISSN:
- 2214-8604
- Page Range / eLocation ID:
- 104730
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Defining heat treatments for compositionally functionally graded materials (FGMs) is challenging due to varying processing conditions in terminal alloys and gradient regions. In the present work, we studied the impact of heat treatments on phase transformations and the resulting mechanical properties along an FGM grading from stainless steel 304L (SS304L) to Inconel 625 (IN625) FGM fabricated using directed energy deposition (DED) additive manufacturing (AM). We applied heat treatments at 700 °C, 900 °C, and 1150 °C and the microstructure and hardness, as a function of layer-wise composition and applied heat treatment, were characterized. The applicability of computational methods previously developed by the team to predict experimentally observed phases by the hybrid Scheil-equilibrium approach was evaluated. This approach improves the accuracy of predicting phases formed after heat treatment compared to equilibrium thermodynamic calculations using the overall layer compositions and provides a simple pathway to assist in designing heat treatment for FGMs.more » « less
-
In functionally graded materials (FGMs) fabricated using directed energy deposition (DED) additive manufacturing (AM), cracks may form due to interdendritic stress during solidification, the formation of deleterious phases, or the buildup of residual stresses. This study builds on our previously proposed concept of FGM feasibility diagrams to identify gradient pathways that avoid deleterious phases in FGMs by also considering hot cracking. Here, five hot cracking criteria were integrated into the feasibility diagrams, and equilibrium simulations were carried out based on Scheil results (termed hybrid Scheil-equilibrium simulation) to predict phase formation below the solidus temperature considering solidification micro-segregation. The new feasibility diagrams were applied to four previously studied FGMs, and the newly proposed approach predicted high crack susceptibility, detrimental phase formation, or interdendritic BCC phase formation in the experimentally observed cracking region. This demonstrates the utility of the proposed framework for crack prediction in the design of future FGMs gradient pathways.more » « less
-
null (Ed.)The balance of bacterial populations in the human body is critical for human health. Researchers have aimed to control bacterial populations using antibiotic substrates. However, antibiotic materials that non-selectively kill bacteria can compromise health by eliminating beneficial bacteria, which leaves the body vulnerable to colonization by harmful pathogens. Due to their chemical tunablity and unique surface properties, graphene oxide (GO)-based materials – termed “functional graphenic materials” (FGMs) – have been previously designed to be antibacterial but have the capacity to actively adhere and instruct probiotics to maintain human health. Numerous studies have demonstrated that negatively and positively charged surfaces influence bacterial adhesion through electrostatic interactions with the negatively charged bacterial surface. We found that tuning the surface charge of FGMs provides an avenue to control bacterial attachment without compromising vitality. Using E. coli as a model organism for Gram-negative bacteria, we demonstrate that negatively charged Claisen graphene (CG), a reduced and carboxylated FGM, is bacterio-repellent through electrostatic repulsion with the bacterial surface. Though positively charged poly- l -lysine (PLL) is antibacterial when free in solution by inserting into the bacterial cell wall, here, we found that covalent conjugation of PLL to CG (giving PLL n -G) masks the antimicrobial activity of PLL by restricting polypeptide mobility. This allows the immobilized positive charge of the PLL n -Gs to be leveraged for E. coli adhesion through electrostatic attraction. We identified the magnitude of positive charge of the PLL n -G conjugates, which is modulated by the length of the PLL peptide, as an important parameter to tune the balance between the opposing forces of bacterial adhesion and proliferation. We also tested adhesion of Gram-positive B. subtilis to these FGMs and found that the effect of FGM charge is less pronounced. B. subtilis adheres nondiscriminatory to all FGMs, regardless of charge, but adhesion is scarce and localized. Overall, this work demonstrates that FGMs can be tuned to selectively control bacterial response, paving the way for future development of FGM-based biomaterials as bacterio-instructive scaffolds through careful design of FGM surface chemistry.more » « less
-
Abstract Compositionally graded alloys, a subclass of functionally graded materials (FGMs), utilize localized variations in composition with a single metal part to achieve higher performance than traditional single material parts. In previous work [Kirk, T., Galvan, E., Malak, R., and Arroyave, R., 2018, “Computational Design of Gradient Paths in Additively Manufactured Functionally Graded Materials,” J. Mech. Des., 140, p. 111410. 10.1115/1.4040816], the authors presented a computational design methodology that avoids common issues which limit a gradient alloy’s feasibility, such as deleterious phases, and optimizes for performance objectives. However, the previous methodology only samples the interior of a composition space, meaning designed gradients must include all elements in the space throughout the gradient. Because even small amounts of additional alloying elements can introduce new deleterious phases, this characteristic often neglects potentially simpler solutions to otherwise unsolvable problems and, consequently, discourages the addition of new elements to the state space. The present work improves upon the previous methodology by introducing a sampling method that includes subspaces with fewer elements in the design search. The new method samples within an artificially expanded form of the state space and projects samples outside the true region to the nearest true subspace. This method is evaluated first by observing the sample distribution in each subspace of a 3D, 4D, and 5D state space. Next, a parametric study in a synthetic 3D problem compares the performance of the new sampling scheme to the previous methodology. Lastly, the updated methodology is applied to design a gradient from stainless steel to equiatomic NiTi that has practical uses such as embedded shape memory actuation and for which the previous methodology fails to find a feasible path.more » « less
An official website of the United States government
