skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 10, 2026

Title: Communication Lower Bounds and Optimal Algorithms for Symmetric Matrix Computations
In this article, we focus on the communication costs of three symmetric matrix computations: i) multiplying a matrix with its transpose, known as a symmetric rank-k update (SYRK) ii) adding the result of the multiplication of a matrix with the transpose of another matrix and the transpose of that result, known as a symmetric rank-2k update (SYR2K) iii) performing matrix multiplication with a symmetric input matrix (SYMM). All three computations appear in the Level 3 Basic Linear Algebra Subroutines (BLAS) and have wide use in applications involving symmetric matrices. We establish communication lower bounds for these kernels using sequential and distributed-memory parallel computational models, and we show that our bounds are tight by presenting communication-optimal algorithms for each setting. Our lower bound proofs rely on applying a geometric inequality for symmetric computations and analytically solving constrained nonlinear optimization problems. The symmetric matrix and its corresponding computations are accessed and performed according to a triangular block partitioning scheme in the optimal algorithms.  more » « less
Award ID(s):
1942892 2106920
PAR ID:
10583125
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Parallel Computing
ISSN:
2329-4949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we focus on the parallel communication cost of multiplying a matrix with its transpose, known as a symmetric rank-k update (SYRK). SYRK requires half the computation of general matrix multiplication because of the symmetry of the output matrix. Recent work (Beaumont et al., SPAA '22) has demonstrated that the sequential I/O complexity of SYRK is also a constant factor smaller than that of general matrix multiplication. Inspired by this progress, we establish memory-independent parallel communication lower bounds for SYRK with smaller constants than general matrix multiplication, and we show that these constants are tight by presenting communication-optimal algorithms. The crux of the lower bound proof relies on extending a key geometric inequality to symmetric computations and analytically solving a constrained nonlinear optimization problem. The optimal algorithms use a triangular blocking scheme for parallel distribution of the symmetric output matrix and corresponding computation. 
    more » « less
  2. Communication lower bounds have long been established for matrix multiplication algorithms. However, most methods of asymptotic analysis have either ignored the constant factors or not obtained the tightest possible values. Recent work has demonstrated that more careful analysis improves the best known constants for some classical matrix multiplication lower bounds and helps to identify more efficient algorithms that match the leading-order terms in the lower bounds exactly and improve practical performance. The main result of this work is the establishment of memory-independent communication lower bounds with tight constants for parallel matrix multiplication. Our constants improve on previous work in each of three cases that depend on the relative sizes of the aspect ratios of the matrices. 
    more » « less
  3. Ta-Shma, Amnon (Ed.)
    Three-player Number On the Forehead communication may be thought of as a three-player Number In the Hand promise model, in which each player is given the inputs that are supposedly on the other two players' heads, and promised that they are consistent with the inputs of the other players. The set of all allowed inputs under this promise may be thought of as an order-3 tensor. We surprisingly observe that this tensor is exactly the matrix multiplication tensor, which is widely studied in the design of fast matrix multiplication algorithms. Using this connection, we prove a number of results about both Number On the Forehead communication and matrix multiplication, each by using known results or techniques about the other. For example, we show how the Laser method, a key technique used to design the best matrix multiplication algorithms, can also be used to design communication protocols for a variety of problems. We also show how known lower bounds for Number On the Forehead communication can be used to bound properties of the matrix multiplication tensor such as its zeroing out subrank. Finally, we substantially generalize known methods based on slice-rank for studying communication, and show how they directly relate to the matrix multiplication exponent ω. 
    more » « less
  4. The matricized-tensor times Khatri-Rao product (MTTKRP) computation is the typical bottleneck in algorithms for computing a CP decomposition of a tensor. In order to develop high performance sequential and parallel algorithms, we establish communication lower bounds that identify how much data movement is required for this computation in the case of dense tensors. We also present sequential and parallel algorithms that attain the lower bounds and are therefore communication optimal. In particular, we show that the structure of the computation allows for less communication than the straightforward approach of casting the computation as a matrix multiplication operation. 
    more » « less
  5. null (Ed.)
    We answer a question of K. Mulmuley. Efremenko et al. (Math. Comp., 2018) have shown that the method of shifted partial derivatives cannot be used to separate the padded permanent from the determinant. Mulmuley asked if this “no-go” result could be extended to a model without padding. We prove this is indeed the case using the iterated matrix multiplication polynomial. We also provide several examples of polynomials with maximal space of partial derivatives, including the complete symmetric polynomials. We apply Koszul flattenings to these polynomials to have the first explicit sequence of polynomials with symmetric border rank lower bounds higher than the bounds attainable via partial derivatives. 
    more » « less