skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 31, 2026

Title: Randomized Algorithms for Symmetric Nonnegative Matrix Factorization
Symmetric Nonnegative Matrix Factorization (SymNMF) is a technique in data analysis and machine learning that approximates a symmetric matrix with a product of a nonnegative, low-rank matrix and its transpose. To design faster and more scalable algorithms for SymNMF, we develop two randomized algorithms for its computation. The first algorithm uses randomized matrix sketching to compute an initial low-rank approximation to the input matrix and proceeds to rapidly compute a SymNMF of the approximation. The second algorithm uses randomized leverage score sampling to approximately solve constrained least squares problems. Many successful methods for SymNMF rely on (approximately) solving sequences of constrained least squares problems. We prove theoretically that leverage score sampling can approximately solve nonnegative least squares problems to a chosen accuracy with high probability. Additionally, we prove sampling complexity results for previously proposed hybrid sampling techniques which deterministically include high leverage score rows. This hybrid scheme is crucial for obtaining speedups in practice. Finally, we demonstrate that both methods work well in practice by applying them to graph clustering tasks on large real world data sets. These experiments show that our methods approximately maintain solution quality and achieve significant speedups for both large dense and large sparse problems.  more » « less
Award ID(s):
1942892 2106920
PAR ID:
10583127
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
SIAM
Date Published:
Journal Name:
SIAM Journal on Matrix Analysis and Applications
Volume:
46
Issue:
1
ISSN:
0895-4798
Page Range / eLocation ID:
584-625
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Joint Nonnegative Matrix Factorization (JointNMF) is a hybrid method for mining information from datasets that contain both feature and connection information. We propose distributed-memory parallelizations of three algorithms for solving the JointNMF problem based on Alternating Nonnegative Least Squares, Projected Gradient Descent, and Projected Gauss-Newton. We extend well-known communication-avoiding algorithms using a single processor grid case to our coupled case on two processor grids. We demonstrate the scalability of the algorithms on up to 960 cores (40 nodes) with 60\% parallel efficiency. The more sophisticated Alternating Nonnegative Least Squares (ANLS) and Gauss-Newton variants outperform the first-order gradient descent method in reducing the objective on large-scale problems. We perform a topic modelling task on a large corpus of academic papers that consists of over 37 million paper abstracts and nearly a billion citation relationships, demonstrating the utility and scalability of the methods. 
    more » « less
  2. null (Ed.)
    We provide an exact analysis of a class of randomized algorithms for solving overdetermined least-squares problems. We consider first-order methods, where the gradients are pre-conditioned by an approximation of the Hessian, based on a subspace embedding of the data matrix. This class of algorithms encompasses several randomized methods among the fastest solvers for leastsquares problems. We focus on two classical embeddings, namely, Gaussian projections and subsampled randomized Hadamard transforms (SRHT). Our key technical innovation is the derivation of the limiting spectral density of SRHT embeddings. Leveraging this novel result, we derive the family of normalized orthogonal polynomials of the SRHT density and we find the optimal pre-conditioned first-order method along with its rate of convergence. Our analysis of Gaussian embeddings proceeds similarly, and leverages classical random matrix theory results. In particular, we show that for a given sketch size, SRHT embeddings exhibits a faster rate of convergence than Gaussian embeddings. Then, we propose a new algorithm by optimizing the computational complexity over the choice of the sketching dimension. To our knowledge, our resulting algorithm yields the best known complexity for solving least-squares problems with no condition number dependence. 
    more » « less
  3. The CP tensor decomposition is used in applications such as machine learning and signal processing to discover latent low-rank structure in multidimensional data. Computing a CP decomposition via an alternating least squares (ALS) method reduces the problem to several linear least squares problems. The standard way to solve these linear least squares subproblems is to use the normal equations, which inherit special tensor structure that can be exploited for computational efficiency. However, the normal equations are sensitive to numerical ill-conditioning, which can compromise the results of the decomposition. In this paper, we develop versions of the CP-ALS algorithm using the QR decomposition and the singular value decomposition, which are more numerically stable than the normal equations, to solve the linear least squares problems. Our algorithms utilize the tensor structure of the CP-ALS subproblems efficiently, have the same complexity as the standard CP-ALS algorithm when the input is dense and the rank is small, and are shown via examples to produce more stable results when ill-conditioning is present. Our MATLAB implementation achieves the same running time as the standard algorithm for small ranks, and we show that the new methods can obtain lower approximation error. 
    more » « less
  4. null (Ed.)
    Abstract Randomized methods can be competitive for the solution of problems with a large matrix of low rank. They also have been applied successfully to the solution of large-scale linear discrete ill-posed problems by Tikhonov regularization (Xiang and Zou in Inverse Probl 29:085008, 2013). This entails the computation of an approximation of a partial singular value decomposition of a large matrix A that is of numerical low rank. The present paper compares a randomized method to a Krylov subspace method based on Golub–Kahan bidiagonalization with respect to accuracy and computing time and discusses characteristics of linear discrete ill-posed problems that make them well suited for solution by a randomized method. 
    more » « less
  5. This work focuses on accelerating the multiplication of a dense random matrix with a (fixed) sparse matrix, which is frequently used in sketching algorithms. We develop a novel scheme that takes advantage of blocking and recomputation (on- the-fly random number generation) to accelerate this operation. The techniques we propose decrease memory movement, thereby increasing the algorithm’s parallel scalability in shared memory architectures. On the Intel Frontera architecture, our algorithm can achieve 2x speedups over libraries such as Eigen and Intel MKL on some examples. In addition, with 32 threads, we can obtain a parallel efficiency of up to approximately 45%. We also present a theoretical analysis for the memory movement lower bound of our algorithm, showing that under mild assumptions, it's possible to beat the data movement lower bound of general matrix-matrix multiply (GEMM) by a factor of sqrt(M), where $$M$$ is the cache size. Finally, we incorporate our sketching method into a randomized algorithm for overdetermined least squares with sparse data matrices. Our results are competitive with SuiteSparse for highly overdetermined problems; in some cases, we obtain a speedup of 10x over SuiteSparse. 
    more » « less