Depth profiles of water temperature on 1m intervals from 0.1 to 9 m depth; dissolved oxygen at 5 and 9 m depth; pressure at 9 m depth; and temperature, dissolved oxygen, conductivity, specific conductance, chlorophyll a, phycocyanin, total dissolved solids, fluorescent dissolved organic matter, and pressure at ~1.6 m depth were collected with a suite of high-frequency sensors at Falling Creek Reservoir (Vinton, Virginia, USA) on the 10-minute scale in 2018-2022. Falling Creek Reservoir is owned and managed by the Western Virginia Water Authority as a primary drinking water source for Roanoke, Virginia. This data product consists of one dataset compiled from water temperature data measured at multiple depths by thermistors, two dissolved oxygen sensors at multiple depths, pressure measured at one depth, and a YSI EXO2 sonde that measures temperature, dissolved oxygen, pressure, conductivity, specific conductance, chlorophyll a, phycocyanin, total dissolved solids, and fluorescent dissolved organic matter, at one depth, all measured at the deepest site of the reservoir adjacent to the dam.
more »
« less
Time series of high-frequency sensor data measuring water temperature, dissolved oxygen, pressure, conductivity, specific conductance, total dissolved solids, chlorophyll a, phycocyanin, fluorescent dissolved organic matter, and turbidity at discrete depths in Falling Creek Reservoir, Virginia, USA in 2018-2024
We monitored water quality in Falling Creek Reservoir (Vinton, Virginia, USA, 37.30325 -79.8373) with high-frequency (10-minute) sensors in 2018-2024. All variables were measured at the deepest site of the reservoir adjacent to the dam. Falling Creek Reservoir is owned and managed by the Western Virginia Water Authority as a primary drinking water source for Roanoke, Virginia. This data product consists of one dataset compiled of depth profiles of water temperature on 1-m intervals from 0.1 to 9 m depth; dissolved oxygen at 5 m and 9 m depth; pressure at 9 m depth; and temperature, dissolved oxygen, conductivity, specific conductance, chlorophyll a, phycocyanin, total dissolved solids, fluorescent dissolved organic matter, turbidity, and pressure at ~1.6 m depth.
more »
« less
- PAR ID:
- 10583173
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We monitored water quality in Falling Creek Reservoir (Vinton, Virginia, USA, 37.30325 -79.8373) with high-frequency (10-minute) sensors in 2018-2023. All variables were measured at the deepest site of the reservoir adjacent to the dam. Falling Creek Reservoir is owned and managed by the Western Virginia Water Authority as a primary drinking water source for Roanoke, Virginia. This data product consists of one dataset compiled of depth profiles of water temperature on 1-m intervals from 0.1 to 9 m depth; dissolved oxygen at 5 m and 9 m depth; pressure at 9 m depth; and temperature, dissolved oxygen, conductivity, specific conductance, chlorophyll a, phycocyanin, total dissolved solids, fluorescent dissolved organic matter, turbidity, and pressure at ~1.6 m depth.more » « less
-
Depth profiles of temperature, dissolved oxygen, conductivity, specific conductance, chlorophyll a, and turbidity were collected with a CTD (Conductivity, Temperature, and Depth) profiler fitted with a SBE 43 Dissolved Oxygen sensor and an ECO Triplet Fluorometer and Backscattering Sensor from 2013 to 2022. From 2017-2022, pH and oxidation-reduction potential (ORP) were also collected with a SBE 27 pH and O.R.P. (redox) sensor. CTD profiles were collected in five drinking water reservoirs in southwestern Virginia, USA. All variables were measured every 0.25 seconds, resulting in depth profiles at approximately ten centimeter resolution. The five study reservoirs are: Beaverdam Reservoir (Vinton, Virginia), Carvins Cove Reservoir (Roanoke, Virginia), Falling Creek Reservoir (Vinton, Virginia), Gatewood Reservoir (Pulaski, Virginia), and Spring Hollow Reservoir (Salem, Virginia). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia, and Gatewood Reservoir is a drinking water source for the town of Pulaski, Virginia. The dataset consists of CTD depth profiles measured at the deepest site of each reservoir adjacent to the dam as well as well as other upstream reservoir sites. The profiles were collected approximately fortnightly in the spring months, weekly in the summer and early autumn, and monthly in the late autumn and winter. Beaverdam Reservoir, Carvins Cove Reservoir, and Falling Creek Reservoir were sampled every year in the dataset (2013-2022); Spring Hollow Reservoir was not in sampled in 2018 or 2020–2022; and Gatewood Reservoir was only sampled in 2016.more » « less
-
We monitored water quality in Carvins Cove Reservoir (Roanoke, Virginia, USA) with high-frequency (10-minute) sensors in 2020-2024. Carvins Cove Reservoir is owned and managed by the Western Virginia Water Authority as a primary drinking water source. This data package consists of datasets from two separate deployments. First, from July 2020 - August 2021, depth profiles of water temperature were measured on 1-meter intervals using HOBO temperature pendant loggers deployed from 0.1 m below the surface of the reservoir to 10 m depth, and also at 15 and 20 m depth. Additionally, water temperature was measured in the Sawmill Branch inflow at 0.5 m depth using HOBO temperature pendant loggers. Second, from 9 April 2021 - 31 December 2024, depth profiles of water temperature were measured on 1-meter intervals from 0.1 m below the surface of the reservoir to 11 m depth and additionally at 15 and 19 m. A YSI EXO2 sonde measured water temperature, conductivity, specific conductance, chlorophyll a, phycocyanin, total dissolved solids, dissolved oxygen, and fluorescent dissolved organic matter at ~1.5 m depth. A YSI EXO3 sonde measured water temperature, conductivity, specific conductance, total dissolved solids, dissolved oxygen, and fluorescent dissolved organic matter at 9 m depth, which corresponds to the depth of a water outtake valve. The thermistors, EXO3 sonde, and pressure sensor were deployed at stationary, fixed elevations (referred to as positions) deployed off of the dam near the water outtake valves. Due to variable water levels in the reservoir, the depths of these sensors varied over time. In contrast, the EXO2 was deployed on a buoy from 2021-2022 and remained at 1.5 m depth as the water level fluctuated. However, in 2023, the buoy disappeared in a storm, and after that the EOX2 was deployed at a stationary elevation as the water level fluctuated around the sensor. The EXO2 was redeployed on the buoy in 2024. At the monitoring site, the reservoir is approximately 19 m deep (reservoir maximum depth is 23 m).more » « less
-
We monitored water quality in Carvins Cove Reservoir (Roanoke, Virginia, USA) with high-frequency (10-minute) sensors in 2020-2023. Carvins Cove Reservoir is owned and managed by the Western Virginia Water Authority as a primary drinking water source. This data package consists of datasets from two separate deployments. First, from July 2020 - August 2021, depth profiles of water temperature were measured on 1-meter intervals using HOBO temperature pendant loggers deployed from 0.1 m below the surface of the reservoir to 10 m depth, and also at 15 and 20 m depth. Additionally, water temperature was measured in the Sawmill Branch inflow at 0.5 m depth using HOBO temperature pendant loggers. Second, from 9 April 2021 - 31 December 2023, depth profiles of water temperature were measured on 1-meter intervals from 0.1 m below the surface of the reservoir to 11 m depth and additionally at 15 and 19 m. A YSI EXO2 sonde measured water temperature, conductivity, specific conductance, chlorophyll a, phycocyanin, total dissolved solids, dissolved oxygen, and fluorescent dissolved organic matter at ~1.5 m depth. A YSI EXO3 sonde measured water temperature, conductivity, specific conductance, total dissolved solids, dissolved oxygen, and fluorescent dissolved organic matter at 9 m depth, which corresponds to the depth of a water outtake valve. The thermistors, EXO3 sonde, and pressure sensor were deployed at stationary, fixed elevations (referred to as positions) deployed off of the dam near the water outtake valves. Due to variable water levels in the reservoir, the depths of these sensors varied over time. In contrast, the EXO2 was deployed on a buoy from 2021-2022 and remained at 1.5 m depth as the water level fluctuated. However, in 2023, the buoy disappeared in a storm, after that the EOX2 was deployed at a stationary elevation as the water level fluctuated around the sensor. At the monitoring site, the reservoir is approximately 19 m deep (reservoir maximum depth is 23 m).more » « less