We monitored water level and water quality in Beaverdam Reservoir (Vinton, Virginia, USA, 37.31288, -79.8159) with visual observations and high-frequency (10-minute and 15-minute) sensors in 2009-2023. All variables were measured at the deepest site of the reservoir adjacent to the dam. Beaverdam Reservoir is owned and managed by the Western Virginia Water Authority as a secondary drinking water source for Roanoke, Virginia. This data package is comprised of three datasets: 1) BVR_WaterLevel_2009_2023.csv, 2) BVRSensorString_2016_2020.csv, and 3) BVRPlatform_2020_2023.csv. 1) BVR_WaterLevel_2009_2023.csv contains water level observations of the staff gauge by both the Western Virginia Water Authority and the Virginia Tech Reservoir Group LTREB field crew. This dataset spans 2009 to 2023, with data collection still ongoing. 2) BVRSensorString_2016_2020.csv consists of a water temperature profile at ~1-meter intervals from the surface of the reservoir to 10.5 m below the water, complemented by a dissolved oxygen logger at 5 m or 10 m, depending on the time of year. A sonde measuring water temperature, conductivity, specific conductance, chlorophyll a, phycocyanin, total dissolved solids, dissolved oxygen, fluorescent dissolved organic matter, and turbidity was additionally deployed at ~1.5 m depth. This dataset spans 2016 to 2020, with no additional data collection beyond the last observation. The third dataset is BVRPlatform_2020_2023.csv, with data collection still ongoing. This dataset contains: a) a temperature string with 13 temperature sensors deployed ~1 m apart from the surface to 0.5 m above the sediments of the reservoir; b) two dissolved oxygen sensors, one in the middle of the string and one sensor above the sediments; and c) a pressure sensor just above the sediments. The same sonde from the first 2016-2020 dataset is also included in this 2020-2023 dataset, deployed at 1.5 m below the surface. The sensors on the temperature string (thermistors, dissolved oxygen sensors, and pressure sensor) are permanently fixed to the platform and do not change with the water level. In the methods, we describe how to add a depth measurement to each observation.
more »
« less
Time series of high-frequency sensor data measuring water temperature, dissolved oxygen, conductivity, specific conductance, total dissolved solids, chlorophyll a, phycocyanin, fluorescent dissolved organic matter, and turbidity at discrete depths, and water level in Beaverdam Reservoir, Virginia, USA in 2009-2024
We monitored water level and water quality in Beaverdam Reservoir (Vinton, Virginia, USA, 37.31288, -79.8159) with visual observations and high-frequency (10- to 15-minute resolution) sensors in 2009-2024. All variables were measured at the deepest site of the reservoir adjacent to the dam. Beaverdam Reservoir is owned and managed by the Western Virginia Water Authority as a secondary drinking water source for Roanoke, Virginia. This data package is comprised of three datasets: 1) bvre-waterlevel_2009_2024.csv, 2) bvre-sensorstring_2016_2020.csv, and 3) bvre-waterquality_2020_2024.csv. 1) bvre-waterlevel_2009_2024.csv contains water level observations of the staff gauge at a platform near the reservoir's dam by both the Western Virginia Water Authority and the Virginia Tech Reservoir Group LTREB field crew. This dataset spans 2009 to 2024, with data collection still ongoing. 2) bvre-sensorstring_2016_2020.csv consists of a water temperature profile at ~1-meter intervals from the surface of the reservoir to 10.5 m below the water, complemented by intermittent data collected by a dissolved oxygen logger deployed at 5 m or 10 m. A sonde measuring water temperature, conductivity, specific conductance, chlorophyll a, phycocyanin, total dissolved solids, dissolved oxygen, fluorescent dissolved organic matter, and turbidity was additionally deployed at ~1.5 m depth. This dataset spans 2016 to 2020, with no additional data collection beyond the last observation. The third dataset is bvre-waterquality_2020_2024.csv, with data collection still ongoing. This dataset contains: a) a temperature string with 13 temperature sensors deployed ~1 m apart from the surface to 0.5 m above the sediments of the reservoir; b) two dissolved oxygen sensors, one in the middle of the string and one sensor above the sediments; and c) a pressure sensor just above the sediments. The same sonde from the first 2016-2020 dataset is also included in this 2020-2024 dataset, still deployed at ~1.5 m below the surface. The sensors on the temperature string (thermistors, dissolved oxygen sensors, and pressure sensor) are permanently fixed to the platform and do not change with the water level. In the methods, we describe how to add a depth measurement to each observation.
more »
« less
- PAR ID:
- 10583175
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We monitored water quality in Beaverdam Reservoir (Vinton, Virginia, USA, 37.31288, -79.8159) with high-frequency (10-minute and 15-minute) sensors in 2016-2022. All variables were measured at the deepest site of the reservoir adjacent to the dam. Beaverdam Reservoir is owned and managed by the Western Virginia Water Authority as a secondary drinking water source for Roanoke, Virginia. This data package is comprised of 2 data sets: BVR_sensor_string_2016_2020.csv and BVR_platform_data_2020_2022.csv. BVR_sensor_string_2016_2022.csv consists of a temperature profile at ~1-meter intervals from the surface of the reservoir to 10.5 m below the water, complemented by a dissolved oxygen logger at 5 m or 10 m depending on the time of year. A sonde measuring temperature, conductivity, specific conductance, chlorophyll a, phycocyanin, total dissolved solids, dissolved oxygen, fluorescent dissolved organic matter, and turbidity was deployed at ~1.5 m depth. This initial data set spans 2016 to 2020, with no additional data collection beyond the last observation. The second data set is BVR_platform_data_2020_2022.csv, with data collection still ongoing. This data set contains 1) a temperature string with 13 temperature sensors ~1 m apart from the surface to 0.5 m above the sediments of the reservoir; 2) two oxygen sensors, one in the middle of the string and one sensor above the sediments; and 3) a pressure sensor just above the sediments. The same sonde from the first 2016-2020 data set is also included in this 2020-2022 data set, deployed at 1.5 m below the surface. The temperature string with the thermistors, dissolved oxygen sensor, and pressure sensor are permanently fixed to the platform and water level changes around them. In the methods we describe how to add a depth measurement to each observation.more » « less
-
We monitored water quality in Carvins Cove Reservoir (Roanoke, Virginia, USA) with high-frequency (10-minute) sensors in 2020-2024. Carvins Cove Reservoir is owned and managed by the Western Virginia Water Authority as a primary drinking water source. This data package consists of datasets from two separate deployments. First, from July 2020 - August 2021, depth profiles of water temperature were measured on 1-meter intervals using HOBO temperature pendant loggers deployed from 0.1 m below the surface of the reservoir to 10 m depth, and also at 15 and 20 m depth. Additionally, water temperature was measured in the Sawmill Branch inflow at 0.5 m depth using HOBO temperature pendant loggers. Second, from 9 April 2021 - 31 December 2024, depth profiles of water temperature were measured on 1-meter intervals from 0.1 m below the surface of the reservoir to 11 m depth and additionally at 15 and 19 m. A YSI EXO2 sonde measured water temperature, conductivity, specific conductance, chlorophyll a, phycocyanin, total dissolved solids, dissolved oxygen, and fluorescent dissolved organic matter at ~1.5 m depth. A YSI EXO3 sonde measured water temperature, conductivity, specific conductance, total dissolved solids, dissolved oxygen, and fluorescent dissolved organic matter at 9 m depth, which corresponds to the depth of a water outtake valve. The thermistors, EXO3 sonde, and pressure sensor were deployed at stationary, fixed elevations (referred to as positions) deployed off of the dam near the water outtake valves. Due to variable water levels in the reservoir, the depths of these sensors varied over time. In contrast, the EXO2 was deployed on a buoy from 2021-2022 and remained at 1.5 m depth as the water level fluctuated. However, in 2023, the buoy disappeared in a storm, and after that the EOX2 was deployed at a stationary elevation as the water level fluctuated around the sensor. The EXO2 was redeployed on the buoy in 2024. At the monitoring site, the reservoir is approximately 19 m deep (reservoir maximum depth is 23 m).more » « less
-
We monitored water quality in Carvins Cove Reservoir (Roanoke, Virginia, USA) with high-frequency (10-minute) sensors in 2020-2023. Carvins Cove Reservoir is owned and managed by the Western Virginia Water Authority as a primary drinking water source. This data package consists of datasets from two separate deployments. First, from July 2020 - August 2021, depth profiles of water temperature were measured on 1-meter intervals using HOBO temperature pendant loggers deployed from 0.1 m below the surface of the reservoir to 10 m depth, and also at 15 and 20 m depth. Additionally, water temperature was measured in the Sawmill Branch inflow at 0.5 m depth using HOBO temperature pendant loggers. Second, from 9 April 2021 - 31 December 2023, depth profiles of water temperature were measured on 1-meter intervals from 0.1 m below the surface of the reservoir to 11 m depth and additionally at 15 and 19 m. A YSI EXO2 sonde measured water temperature, conductivity, specific conductance, chlorophyll a, phycocyanin, total dissolved solids, dissolved oxygen, and fluorescent dissolved organic matter at ~1.5 m depth. A YSI EXO3 sonde measured water temperature, conductivity, specific conductance, total dissolved solids, dissolved oxygen, and fluorescent dissolved organic matter at 9 m depth, which corresponds to the depth of a water outtake valve. The thermistors, EXO3 sonde, and pressure sensor were deployed at stationary, fixed elevations (referred to as positions) deployed off of the dam near the water outtake valves. Due to variable water levels in the reservoir, the depths of these sensors varied over time. In contrast, the EXO2 was deployed on a buoy from 2021-2022 and remained at 1.5 m depth as the water level fluctuated. However, in 2023, the buoy disappeared in a storm, after that the EOX2 was deployed at a stationary elevation as the water level fluctuated around the sensor. At the monitoring site, the reservoir is approximately 19 m deep (reservoir maximum depth is 23 m).more » « less
-
Depth profiles of water temperature on 1m intervals from 0.1 to 9 m depth; dissolved oxygen at 5 and 9 m depth; pressure at 9 m depth; and temperature, dissolved oxygen, conductivity, specific conductance, chlorophyll a, phycocyanin, total dissolved solids, fluorescent dissolved organic matter, and pressure at ~1.6 m depth were collected with a suite of high-frequency sensors at Falling Creek Reservoir (Vinton, Virginia, USA) on the 10-minute scale in 2018-2022. Falling Creek Reservoir is owned and managed by the Western Virginia Water Authority as a primary drinking water source for Roanoke, Virginia. This data product consists of one dataset compiled from water temperature data measured at multiple depths by thermistors, two dissolved oxygen sensors at multiple depths, pressure measured at one depth, and a YSI EXO2 sonde that measures temperature, dissolved oxygen, pressure, conductivity, specific conductance, chlorophyll a, phycocyanin, total dissolved solids, and fluorescent dissolved organic matter, at one depth, all measured at the deepest site of the reservoir adjacent to the dam.more » « less