skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-pressure characterization of Ag3AuTe2: Implications for strain-induced band tuning
Recent band structure calculations have suggested the potential for band tuning in the chiral semiconductor Ag3AuTe2 to zero upon application of negative strain. In this study, we report on the synthesis of polycrystalline Ag3AuTe2 and investigate its transport and optical properties and mechanical compressibility. Transport measurements reveal the semiconducting behavior of Ag3AuTe2 with high resistivity and an activation energy Ea of 0.2 eV. The optical bandgap determined by diffuse reflectance measurements is about three times wider than the experimental Ea. Despite the difference, both experimental gaps fall within the range of predicted bandgaps by our first-principles density functional theory (DFT) calculations employing the Perdew–Burke–Ernzerhof and modified Becke–Johnson methods. Furthermore, our DFT simulations predict a progressive narrowing of the bandgap under compressive strain, with a full closure expected at a strain of −4% relative to the lattice parameter. To evaluate the feasibility of gap tunability at such substantial strain, the high-pressure behavior of Ag3AuTe2 was investigated by in situ high-pressure x-ray diffraction up to 47 GPa. Mechanical compression beyond 4% resulted in a pressure-induced structural transformation, indicating the possibility of substantial gap modulation under extreme compression conditions.  more » « less
Award ID(s):
2104881
PAR ID:
10583299
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
Applied Physics Letters
Volume:
125
Issue:
21
ISSN:
0003-6951
Page Range / eLocation ID:
212103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The compression behavior of osmium metal was investigated up to 280 GPa (volume compression V/Vo =0.725) under nonhydrostatic conditions at ambient temperature using angle dispersive axial x-ray diffraction (A-XRD) with a diamond anvil cell (DAC). In addition, shear strength of osmium was measured to 170 GPa using radial x-ray diffraction (R-XRD) technique in DAC. Both diffraction techniques in DAC employed platinum as an internal pressure standard. Density functional theory (DFT) calculations were also performed, and the computed lattice parameters and volumes under compression are in good agreement with the experiments. DFT predicts a monotonous increase in axial ratio (c/a) with pressure and the structural anomalies of less than 1 % in (c/a) ratio below 150 GPa were not reproduced in theoretical calculations and hydrostatic measurements. The measured value of shear strength of osmium (τ) approaches a limiting value of 6 GPa above a pressure of 50 GPa in contrast to theoretical predictions of 24 GPa and is likely due to imperfections in polycrystalline samples. DFT calculations also enable the studies of shear and tensile deformations. The theoretical ideal shear stress is found along the (001)[1-10] shear direction with the maximal shear stress ~24 GPa at critical strain ~0.13. 
    more » « less
  2. High pressure study on ultra-hard transition-metal boride Os2B3 was carried out in a diamond anvil cell under isothermal and non-hydrostatic compression with platinum as an X-ray pressure standard. The ambient-pressure hexagonal phase of Os2B3 is found to be stable with a volume compression V/V0 = 0.670 ± 0.009 at the maximum pressure of 358 ± 7 GPa. Anisotropic compression behavior is observed in Os2B3 to the highest pressure, with the c-axis being the least compressible. The measured equation of state using the 3rd-order Birch-Murnaghan fit reveals a bulk modulus K0= 397 GPa and its first pressure derivative K0'= 4.0. The experimental lattice parameters and bulk modulus at ambient conditions also agree well with our density-functional-theory (DFT) calculations within an error margin of ~1%. DFT results indicate that Os2B3 becomes more ductile under compression, with a strong anisotropy in the axial bulk modulus persisting to the highest pressure. DFT further enables the studies of charge distribution and electronic structure at high pressure. The pressure-enhanced electron density and repulsion along the Os and B bonds result in a high incompressibility along the crystal c-axis. Our work helps to elucidate the fundamental properties of Os2B3 under ultrahigh pressure for potential applications in extreme environments. 
    more » « less
  3. Structural and optical high-pressure study of FASnBr 3 (FA = formamidinium) revealed a cubic to orthorhombic phase transition near 1.4 GPa accompanied by a huge band gap red-shift from 2.4 to 1.6 eV, which is followed by a blue-shift of ∼0.2 eV upon further pressure increase. DFT calculations indicate that the variation in band gap is related to changes in Sn–Br bond length alternation, with an equalization of such difference predicted at high pressure. Extending the calculations to analogous lead-free systems provides a unifying mechanistic picture of pressure-induced band gap tuning in tin halide perovskites, which is correlated to the variation of specific structural parameters. These results represent a solid guide to predict and modulate the pressure-response of metal halide perovskites based on the knowledge of their structural properties at ambient pressure. 
    more » « less
  4. Abstract Critical processes including seismic faulting, reservoir compartmentalization, and borehole failure involve high‐pressure mechanical behavior and strain localization of sedimentary rocks such as sandstone. Sand is often used as a model material to study the mechanical behavior of poorly lithified sandstone. Recent studies exploring the multi‐scale mechanics of sand have characterized the brittle, low‐pressure regime of behavior; however, limited work has provided insights into the ductile, high‐pressure regime of behavior viain‐situmeasurements. Critical features of the ductile regime, including grain breakage, grain micromechanics, and volumetric strain behavior therefore remain under‐explored. Here, we use a new high‐pressure triaxial apparatus within‐situx‐ray tomography to provide new insights into deformation banding, grain breakage, and grain micromechanics in Ottawa sand subjected to triaxial compression under confining pressures between 10 and 45 MPa. We observed strain‐hardening at pressures above 15 MPa and strain‐neutral responses at pressures below 15 MPa. Compacting shear bands and grain breakage were observed at all pressures with no significant variation due to grain size, except for minor increases in breakage in less‐rounded sands. Grain breakage emerged at stress levels lower than the assumed yield threshold and more intense breakage was associated with thinner deformation bands. Contact sliding at inter‐grain contacts demonstrated a bifurcation into a bimodal distribution, with intense sliding within deformation bands and reduced but non‐negligible sliding outside of deformation bands, suggesting that off‐band zones remain mechanically active during strain hardening. 
    more » « less
  5. Abstract Previous band structure calculations predicted Ag3AuSe2to be a semiconductor with a band gap of approximately 1 eV. Here, we report single crystal growth of Ag3AuSe2and its transport and optical properties. Single crystals of Ag3AuSe2were synthesized by slow‐cooling from the melt, and grain sizes were confirmed to be greater than 2 mm using electron backscatter diffraction. Optical and transport measurements reveal that Ag3AuSe2is a highly resistive semiconductor with a band gap and activation energy around 0.3 eV. Our first‐principles calculations show that the experimentally determined band gap lies between the predicted band gaps from GGA and hybrid functionals. We predict band inversion to be possible by applying tensile strain. The sensitivity of the gap to Ag/Au ordering, chemical substitution, and heat treatment merit further investigation. 
    more » « less