Throughout many scientific and engineering fields, including control theory, quantum mechanics, advanced dynamics, and network theory, a great many important applications rely on the spectral decomposition of matrices. Traditional methods such as the power iteration method, Jacobi eigenvalue method, and QR decomposition are commonly used to compute the eigenvalues and eigenvectors of a square and symmetric matrix. However, these methods suffer from certain drawbacks: in particular, the power iteration method can only find the leading eigenpair (i.e., the largest eigenvalue and its corresponding eigenvector), while the Jacobi and QR decomposition methods face significant performance limitations when facing with large scale matrices. Typically, even producing approximate eigenpairs of a general square matrix requires at least O(N^3) time complexity, where N is the number of rows of the matrix. In this work, we exploit the newly developed memristor technology to propose a lowcomplexity, scalable memristorbased method for deriving a set of dominant eigenvalues and eigenvectors for real symmetric nonnegative matrices. The time complexity for our proposed algorithm is O(N^2 /Δ) (where Δ governs the accuracy). We present experimental studies to simulate the memristorsupporting algorithm, with results demonstrating that the average error for our method is within 4%, while its performance is upmore »
Ensemblebased estimates of eigenvector error for empirical covariance matrices
Abstract Covariance matrices are fundamental to the analysis and forecast of economic, physical and biological systems. Although the eigenvalues $\{\lambda _i\}$ and eigenvectors $\{\boldsymbol{u}_i\}$ of a covariance matrix are central to such endeavours, in practice one must inevitably approximate the covariance matrix based on data with finite sample size $n$ to obtain empirical eigenvalues $\{\tilde{\lambda }_i\}$ and eigenvectors $\{\tilde{\boldsymbol{u}}_i\}$, and therefore understanding the error so introduced is of central importance. We analyse eigenvector error $\\boldsymbol{u}_i  \tilde{\boldsymbol{u}}_i \^2$ while leveraging the assumption that the true covariance matrix having size $p$ is drawn from a matrix ensemble with known spectral properties—particularly, we assume the distribution of population eigenvalues weakly converges as $p\to \infty $ to a spectral density $\rho (\lambda )$ and that the spacing between population eigenvalues is similar to that for the Gaussian orthogonal ensemble. Our approach complements previous analyses of eigenvector error that require the full set of eigenvalues to be known, which can be computationally infeasible when $p$ is large. To provide a scalable approach for uncertainty quantification of eigenvector error, we consider a fixed eigenvalue $\lambda $ and approximate the distribution of the expected square error $r= \mathbb{E}\left [\ \boldsymbol{u}_i  \tilde{\boldsymbol{u}}_i \^2\right ]$ across the more »
 Award ID(s):
 1815971
 Publication Date:
 NSFPAR ID:
 10148219
 Journal Name:
 Information and Inference: A Journal of the IMA
 Volume:
 8
 Issue:
 2
 Page Range or eLocationID:
 289 to 312
 ISSN:
 20498772
 Sponsoring Org:
 National Science Foundation
More Like this


Summary This paper is concerned with empirical likelihood inference on the population mean when the dimension $p$ and the sample size $n$ satisfy $p/n\rightarrow c\in [1,\infty)$. As shown in Tsao (2004), the empirical likelihood method fails with high probability when $p/n>1/2$ because the convex hull of the $n$ observations in $\mathbb{R}^p$ becomes too small to cover the true mean value. Moreover, when $p> n$, the sample covariance matrix becomes singular, and this results in the breakdown of the first sandwich approximation for the log empirical likelihood ratio. To deal with these two challenges, we propose a new strategy of adding two artificial data points to the observed data. We establish the asymptotic normality of the proposed empirical likelihood ratio test. The proposed test statistic does not involve the inverse of the sample covariance matrix. Furthermore, its form is explicit, so the test can easily be carried out with low computational cost. Our numerical comparison shows that the proposed test outperforms some existing tests for highdimensional mean vectors in terms of power. We also illustrate the proposed procedure with an empirical analysis of stock data.

Resonant tunneling diodes (RTDs) have come fullcircle in the past 10 years after their demonstration in the early 1990s as the fastest roomtemperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a selfoscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an ntype In0.53Ga0.47As/AlAs doublebarrier RTD operating as a crossgap light emitter at ~300K. The MBEgrowth stack is shown in Fig. 1(a). A 15μmdiammesa device was defined by standard planar processing including a top annular ohmic contact with a 5μmdiam pinhole in the center to couple out enough of the internal emission for accurate freespace power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at = 1684 nm  close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K.more »

The cumulative empirical spectral measure (CESM) $\Phi[\mathbf{A}] : \mathbb{R} \to [0,1]$ of a $n\times n$ symmetric matrix $\mathbf{A}$ is defined as the fraction of eigenvalues of $\mathbf{A}$ less than a given threshold, i.e., $\Phi[\mathbf{A}](x) := \sum_{i=1}^{n} \frac{1}{n} {\large\unicode{x1D7D9}}[ \lambda_i[\mathbf{A}]\leq x]$. Spectral sums $\operatorname{tr}(f[\mathbf{A}])$ can be computed as the Riemann–Stieltjes integral of $f$ against $\Phi[\mathbf{A}]$, so the task of estimating CESM arises frequently in a number of applications, including machine learning. We present an error analysis for stochastic Lanczos quadrature (SLQ). We show that SLQ obtains an approximation to the CESM within a Wasserstein distance of $t \:  \lambda_{\text{max}}[\mathbf{A}]  \lambda_{\text{min}}[\mathbf{A}] $ with probability at least $1\eta$, by applying the Lanczos algorithm for $\lceil 12 t^{1} + \frac{1}{2} \rceil$ iterations to $\lceil 4 ( n+2 )^{1}t^{2} \ln(2n\eta^{1}) \rceil$ vectors sampled independently and uniformly from the unit sphere. We additionally provide (matrixdependent) a posteriori error bounds for the Wasserstein and Kolmogorov–Smirnov distances between the output of this algorithm and the true CESM. The quality of our bounds is demonstrated using numerical experiments.

Abstract An unidentified quantum fluid designated the pseudogap (PG) phase is produced by electrondensity depletion in the CuO 2 antiferromagnetic insulator. Current theories suggest that the PG phase may be a pair density wave (PDW) state characterized by a spatially modulating density of electron pairs. Such a state should exhibit a periodically modulating energy gap $${\Delta }_{{{{{{\rm{P}}}}}}}({{{{{\boldsymbol{r}}}}}})$$ Δ P ( r ) in realspace, and a characteristic quasiparticle scattering interference (QPI) signature $${\Lambda }_{{{{{{\rm{P}}}}}}}({{{{{\boldsymbol{q}}}}}})$$ Λ P ( q ) in wavevector space. By studying strongly underdoped Bi 2 Sr 2 CaDyCu 2 O 8 at holedensity ~0.08 in the superconductive phase, we detect the 8 a 0 periodic $${\Delta }_{{{{{{\rm{P}}}}}}}({{{{{\boldsymbol{r}}}}}})$$ Δ P ( r ) modulations signifying a PDW coexisting with superconductivity. Then, by visualizing the temperature dependence of this electronic structure from the superconducting into the pseudogap phase, we find the evolution of the scattering interference signature $$\Lambda ({{{{{\boldsymbol{q}}}}}})$$ Λ ( q ) that is predicted specifically for the temperature dependence of an 8 a 0 periodic PDW. These observations are consistent with theory for the transition from a PDW state coexisting with d wave superconductivity to a pure PDW state in the Bi 2 Sr 2 CaDyCu 2more »