Summary Modern statistical methods for multivariate time series rely on the eigendecomposition of matrix-valued functions such as time-varying covariance and spectral density matrices. The curse of indeterminacy or misidentification of smooth eigenvector functions has not received much attention. We resolve this important problem and recover smooth trajectories by examining the distance between the eigenvectors of the same matrix-valued function evaluated at two consecutive points. We change the sign of the next eigenvector if its distance with the current one is larger than the square root of 2. In the case of distinct eigenvalues, this simple method delivers smooth eigenvectors. For coalescing eigenvalues, we match the corresponding eigenvectors and apply an additional signing around the coalescing points. We establish consistency and rates of convergence for the proposed smooth eigenvector estimators. Simulation results and applications to real data confirm that our approach is needed to obtain smooth eigenvectors.
more »
« less
Ensemble-based estimates of eigenvector error for empirical covariance matrices
Abstract Covariance matrices are fundamental to the analysis and forecast of economic, physical and biological systems. Although the eigenvalues $$\{\lambda _i\}$$ and eigenvectors $$\{\boldsymbol{u}_i\}$$ of a covariance matrix are central to such endeavours, in practice one must inevitably approximate the covariance matrix based on data with finite sample size $$n$$ to obtain empirical eigenvalues $$\{\tilde{\lambda }_i\}$$ and eigenvectors $$\{\tilde{\boldsymbol{u}}_i\}$$, and therefore understanding the error so introduced is of central importance. We analyse eigenvector error $$\|\boldsymbol{u}_i - \tilde{\boldsymbol{u}}_i \|^2$$ while leveraging the assumption that the true covariance matrix having size $$p$$ is drawn from a matrix ensemble with known spectral properties—particularly, we assume the distribution of population eigenvalues weakly converges as $$p\to \infty $$ to a spectral density $$\rho (\lambda )$$ and that the spacing between population eigenvalues is similar to that for the Gaussian orthogonal ensemble. Our approach complements previous analyses of eigenvector error that require the full set of eigenvalues to be known, which can be computationally infeasible when $$p$$ is large. To provide a scalable approach for uncertainty quantification of eigenvector error, we consider a fixed eigenvalue $$\lambda $$ and approximate the distribution of the expected square error $$r= \mathbb{E}\left [\| \boldsymbol{u}_i - \tilde{\boldsymbol{u}}_i \|^2\right ]$$ across the matrix ensemble for all $$\boldsymbol{u}_i$$ associated with $$\lambda _i=\lambda $$. We find, for example, that for sufficiently large matrix size $$p$$ and sample size $n> p$, the probability density of $$r$$ scales as $1/nr^2$. This power-law scaling implies that the eigenvector error is extremely heterogeneous—even if $$r$$ is very small for most eigenvectors, it can be large for others with non-negligible probability. We support this and further results with numerical experiments.
more »
« less
- Award ID(s):
- 1815971
- PAR ID:
- 10148219
- Date Published:
- Journal Name:
- Information and Inference: A Journal of the IMA
- Volume:
- 8
- Issue:
- 2
- ISSN:
- 2049-8772
- Page Range / eLocation ID:
- 289 to 312
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Throughout many scientific and engineering fields, including control theory, quantum mechanics, advanced dynamics, and network theory, a great many important applications rely on the spectral decomposition of matrices. Traditional methods such as the power iteration method, Jacobi eigenvalue method, and QR decomposition are commonly used to compute the eigenvalues and eigenvectors of a square and symmetric matrix. However, these methods suffer from certain drawbacks: in particular, the power iteration method can only find the leading eigen-pair (i.e., the largest eigenvalue and its corresponding eigenvector), while the Jacobi and QR decomposition methods face significant performance limitations when facing with large scale matrices. Typically, even producing approximate eigenpairs of a general square matrix requires at least O(N^3) time complexity, where N is the number of rows of the matrix. In this work, we exploit the newly developed memristor technology to propose a low-complexity, scalable memristor-based method for deriving a set of dominant eigenvalues and eigenvectors for real symmetric non-negative matrices. The time complexity for our proposed algorithm is O(N^2 /Δ) (where Δ governs the accuracy). We present experimental studies to simulate the memristor-supporting algorithm, with results demonstrating that the average error for our method is within 4%, while its performance is up to 1.78X better than traditional methods.more » « less
-
Abstract In this paper, we study the largest eigenvalues of sample covariance matrices with elliptically distributed data. We consider the sample covariance matrix $$Q=YY^{*},$$ where the data matrix $$Y \in \mathbb{R}^{p \times n}$$ contains i.i.d. $$p$$-dimensional observations $$\textbf{y}_{i}=\xi _{i}T\textbf{u}_{i},\;i=1,\dots ,n.$$ Here $$\textbf{u}_{i}$$ is distributed on the unit sphere, $$\xi _{i} \sim \xi $$ is some random variable that is independent of $$\textbf{u}_{i}$$ and $$T^{*}T=\varSigma $$ is some deterministic positive definite matrix. Under some mild regularity assumptions on $$\varSigma ,$$ assuming $$\xi ^{2}$$ has bounded support and certain decay behaviour near its edge so that the limiting spectral distribution of $$Q$$ has a square root decay behaviour near the spectral edge, we prove that the Tracy–Widom law holds for the largest eigenvalues of $$Q$$ when $$p$$ and $$n$$ are comparably large. Based on our results, we further construct some useful statistics to detect the signals when they are corrupted by high dimensional elliptically distributed noise.more » « less
-
Many recent works have studied the eigenvalue spectrum of the Conjugate Kernel (CK) defined by the nonlinear feature map of a feedforward neural network. However, existing results only establish weak convergence of the empirical eigenvalue distribution, and fall short of providing precise quantitative characterizations of the “spike” eigenvalues and eigenvectors that often capture the low-dimensional signal structure of the learning problem. In this work, we characterize these signal eigenvalues and eigenvectors for a nonlinear version of the spiked covariance model, including the CK as a special case. Using this general result, we give a quantitative description of how spiked eigenstructure in the input data propagates through the hidden layers of a neural network with random weights. As a second application, we study a simple regime of representation learning where the weight matrix develops a rank-one signal component over training and characterize the alignment of the target function with the spike eigenvector of the CK on test data.more » « less
-
Eighteen successful diffusion couple experiments in 8-component SiO2–TiO2–Al2O3–FeO–MgO–CaO–Na2O–K2O basaltic melts were conducted at 1260°C and 0.5 GPa and at 1500°C and 1.0 GPa. These experiments are combined with previous data at 1350°C and 1.0 GPa (Guo and Zhang, 2018) to study the temperature dependence of multicomponent diffusion in basaltic melts. Effective binary diffusion coefficients of components with monotonic diffusion profiles were extracted and show a strong dependence on their counter-diffusing component even though the average (or interface) compositions are the same. The diffusion matrix at 1260°C was obtained by simultaneously fitting diffusion profiles of all diffusion couple experiments as well as appropriate data from the literature. All features of concentration profiles in both diffusion couples and mineral dissolution are well reproduced by this new diffusion matrix. At 1500°C, only diffusion couple experiments are used to obtain the diffusion matrix. Eigenvectors of the diffusion matrix are used to discuss the diffusion (exchange) mechanism, and eigenvalues characterize the diffusion rate. Diffusion mechanisms at both 1260 and 1500°C are inferred from eigenvectors of diffusion matrices and compared with those at 1350°C reported in Guo and Zhang (2018). There is indication that diffusion eigenvectors in basaltic melts do not depend much on temperature, but complexity is present for some eigenvectors. The two slowest eigenvectors involve the exchange of SiO2 and/or Al2O3 with nonalkalis. The third slowest eigenvector is due to the exchange of divalent oxides with other oxides. The fastest eigenvector is due to the exchange of Na2O with other oxide components. Some eigenvalues differ from each other by less than 1/3, and their eigenvectors are less well defined. We define small difference in eigenvalues as near degeneracy. In strict mathematical degeneracy, eigenvectors are not uniquely defined because any linear combination of two eigenvectors is also an eigenvector. In the case of near degeneracy, more constraints either in terms of higher data quality or more experiments are needed to resolve the eigenvectors. We made a trial effort to generate a set of average eigenvectors, which are assumed to be constant as temperature varies. The corresponding eigenvalues are roughly Arrhenian. Thus, the temperature-dependent diffusion matrix can be roughly predicted. The method is applied to predict experimental diffusion profiles in basaltic melts during olivine and anorthite dissolution at ~1400°C with preliminary success. We further applied our diffusion matrix to investigate multicomponent diffusion during magma mixing in the Bushveld Complex and found such diffusion may result in an increased likelihood of sulfide and Fe-Ti oxide mineralization.more » « less
An official website of the United States government

