skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Navigating Privacy Patterns in the Era of Robotaxis
Privacy engineering encompasses various methodologies and tools, including privacy strategies and privacy patterns, aimed at achieving systems that inherently respect privacy. Despite the collection of numerous privacy patterns, their practical application remains under-explored. This paper investigates the applicability of privacy patterns in the context of robotaxis, a use case in the broader Mobility-as-a-Service (MaaS) ecosystem. Using the LINDDUN framework for privacy threat elicitation, we analyze existing privacy patterns to address identified privacy threats. Our findings reveal challenges in applying these patterns due to inconsistencies and a lack of guidance, as well as a lack of suitable privacy patterns for addressing several privacy threats. To fill the gaps, we propose ideas for new privacy patterns.  more » « less
Award ID(s):
2245323
PAR ID:
10583412
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-6729-4
Page Range / eLocation ID:
32 to 39
Subject(s) / Keyword(s):
Mobility as a service Privacy Navigation Ecosystems Robots Privacy patterns LINDDUN Robotaxi
Format(s):
Medium: X
Location:
Vienna, Austria
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Security is a huge challenge in vehicular networks due to the large size of the network, high mobility of nodes, and continuous change of network topology. These challenges are also applicable to the vehicular fog, which is a new computing paradigm in the context of vehicular networks. In vehicular fog computing, the vehicles serve as fog nodes. This is a promising model for latency-sensitive and location-aware services, which also incurs some unique security and privacy issues. However, there is a lack of a systematic approach to design security solutions of the vehicular fog using a comprehensive threat model. Threat modeling is a step-by-step process to analyze, identify, and prioritize all the potential threats and vulnerabilities of a system and solve them with known security solutions. A well-designed threat model can help to understand the security and privacy threats, vulnerabilities, requirements, and challenges along with the attacker model, the attack motives, and attacker capabilities. Threat model analysis in vehicular fog computing is critical because only brainstorming and threat models of other vehicular network paradigms will not provide a complete scenario of potential threats and vulnerabilities. In this paper, we have explored the threat model of vehicular fog computing and identified the threats and vulnerabilities using STRIDE and CIAA threat modeling processes. We posit that this initiative will help to improve the security and privacy system design of vehicular fog computing. 
    more » « less
  2. Security is a huge challenge in vehicular networks due to the large size of the network, high mobility of nodes, and continuous change of network topology. These challenges are also applicable to the vehicular fog, which is a new computing paradigm in the context of vehicular networks. In vehicular fog computing, the vehicles serve as fog nodes. This is a promising model for latency-sensitive and location-aware services, which also incurs some unique security and privacy issues. However, there is a lack of a systematic approach to design security solutions of the vehicular fog using a comprehensive threat model. Threat modeling is a step-by-step process to analyze, identify, and prioritize all the potential threats and vulnerabilities of a system and solve them with known security solutions. A well-designed threat model can help to understand the security and privacy threats, vulnerabilities, requirements, and challenges along with the attacker model, the attack motives, and attacker capabilities. Threat model analysis in vehicular fog computing is critical because only brainstorming and threat models of other vehicular network paradigms will not provide a complete scenario of potential threats and vulnerabilities. In this paper, we have explored the threat model of vehicular fog computing and identified the threats and vulnerabilities using STRIDE and CIAA threat modeling processes. We posit that this initiative will help to improve the security and privacy system design of vehicular fog computing. 
    more » « less
  3. null (Ed.)
    Older adults are increasingly becoming adopters of digital technologies, such as smartphones; however, this population remains particularly vulnerable to digital privacy and security threats. To date, most research on technology used among older adults focuses on helping individuals overcome their discomfort or lack of expertise with technology to protect them from such threats. Instead, we are interested in how communities of older adults work together to collectively manage their digital privacy and security. To do this, we surveyed 67 individuals across two older adult communities (59 older adults and eight employees or volunteers) and found that the community's collective efficacy for privacy and security was significantly correlated with the individuals' self-efficacy, power usage of technology, and their sense of community belonging. Community collective efficacy is a group's mutual belief in its ability to achieve a shared goal. Using social network analysis, we further unpacked these relationships to show that many older adults interact with others who have similar technological expertise, and closer-knit older adult communities that have low technology expertise (i.e., low power usage and self-efficacy) may increase their community collective efficacy for privacy and security by embedding facilitators (e.g., employees or volunteers) who have more technical expertise within their communities. Our work demonstrates how both peer influence and outside expertise can be leveraged to support older adults in managing their digital privacy and security. 
    more » « less
  4. Consumer Internet of Things (IoT) devices are increasingly common, from smart speakers to security cameras, in homes. Along with their benefits come potential privacy and security threats. To limit these threats a number of commercial services have become available (IoT safeguards). The safeguards claim to provide protection against IoT privacy risks and security threats. However, the effectiveness and the associated privacy risks of these safeguards remains a key open question. In this paper, we investigate the threat detection capabilities of IoT safeguards for the first time. We develop and release an approach for automated safeguards experimentation to reveal their response to common security threats and privacy risks. We perform thousands of automated experiments using popular commercial IoT safeguards when deployed in a large IoT testbed. Our results indicate not only that these devices may be ineffective in preventing risks, but also their cloud interactions and data collection operations may introduce privacy risks for the households that adopt them. 
    more » « less
  5. Abstract This article provides an overview of intimate threats: a class of privacy threats that can arise within our families, romantic partnerships, close friendships, and caregiving relationships. Many common assumptions about privacy are upended in the context of these relationships, and many otherwise effective protective measures fail when applied to intimate threats. Those closest to us know the answers to our secret questions, have access to our devices, and can exercise coercive power over us. We survey a range of intimate relationships and describe their common features. Based on these features, we explore implications for both technical privacy design and policy, and offer design recommendations for ameliorating intimate privacy risks. 
    more » « less