skip to main content


Title: Late Cretaceous arc flare up and sinistral intra-arc ductile deformation in the southern California batholith, 2022, Late Cretaceous arc flare up and sinistral intra-arc ductile deformation in the southern California batholith
We present >90 new igneous and metamorphic zircon and titanite petrochronology ages from the eastern Transverse Ranges of the Southern California Batholith (SCB) to investigate magmatic and tectonic processes in the frontal arc during postulated initiation of Late Cretaceous shallow-slab subduction. Our data cover >4000 km2 in the eastern Transverse Ranges and include data from Mesozoic plutons in the Mt. Pinos, Alamo Mountain, San Gabriel Mountain blocks, and the Eastern Peninsular mylonite zone. Igneous zircon data reveal 4 discrete pulses of magmatism at 258-220 Ma, 160-142 Ma, 120-118 Ma, and 90-66 Ma. The latter pulse involved a widespread magmatic surge in the SCB and coincided with garnet-granulite to upper amphibolite-facies metamorphism and partial melting in the lower crust (Cucamonga terrane, eastern San Gabriel Mountains). In this region, metamorphic zircons in gneisses, migmatites and calc-silicates record high-temperature metamorphism from 91 to 74 Ma at 9–7 kbars and 800–730°C. The Late Cretaceous arc flare-up was temporally and spatially associated with the development of a regionally extensive oblique sinistral-reverse shear system that includes from north to south (present-day) the Tumamait shear zone (Mt. Pinos), the Alamo Mountain-Piru Creek shear zone, the Black Belt shear zone (Cucamonga terrane), and the Eastern Peninsular Ranges shear zone. Syn-kinematic, metamorphic titanite ages in the Tumamait shear zone range from 77–74 Ma at 720–700°C, titanites in the Black Belt mylonite zone give an age of 83 Ma, and those in the eastern Peninsular Ranges mylonite zone give ages of 89–86 Ma at 680–670°C. These data suggest a progressive northward younging of ductile shearing at amphibolite- to upper-amphibolite-facies conditions from 88 to 74 Ma, which overlaps with the timing of the Late Cretaceous arc flare-up event. Collectively, these data indicate that arc magmatism, high-temperature metamorphism, and intra-arc contraction were active in the SCB throughout the Late Cretaceous. These observations appear to contradict existing models for the termination of magmatism and refrigeration of the arc due to underthrusting of the conjugate Shatsky rise starting at ca. 88 Ma. We suggest that shallow-slab subduction likely postdates ca. 74 Ma when high-temperature metamorphism ceased in the SCB.  more » « less
Award ID(s):
2138734
NSF-PAR ID:
10415241
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Geological Society of America Abstracts with Programs
Volume:
54
Issue:
5
Page Range / eLocation ID:
10.1130/abs/2022AM-381618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Late Cretaceous arc flare-up event from 90 to 70 in the Transverse Ranges of the Southern California Batholith was temporally and spatially associated with the development of a large contractional shear system that includes discontinuous segments of the Tumamait shear zone (Mt. Pinos), the Alamo Mountain-Piru Creek shear zone, the Black Belt shear zone (Cucamonga terrane), and the Eastern Peninsular Ranges shear zone. The age and kinematics of these shear zones inform the tectonic setting of the continental arc in Southern California during the beginning of the Laramide orogeny and during postulated large-magnitude dextral translations along the margin (the Baja-BC hypothesis). The Mt. Pinos sector of the Southern California Batholith preserves the intra-arc, transpressional Tumamait shear zone and the ductile-to-brittle Sawmill thrust, both of which record Late Cretaceous deformation. The batholith and shear zone are hosted by Mesoproterozoic biotite gneisses and migmatites (1750-1760 Ma), Neoproterozoic biotite granites (660 Ma), Permo-Triassic granitic gneisses and amphibolite (260-250 Ma), and Late Jurassic granites and gneisses (160-140 Ma). Late Cretaceous rocks are variably deformed and include porphyritic granodiorite gneisses and peraluminous granites emplaced at 86 to 70 Ma. Mylonites of the Tumamait shear zone affect all rocks in the area and generally strike NW-SE and dip moderately to the NE and SW. Mineral stretching lineations plunge shallowly to the SE. Mylonitic fabrics are folded into a regional, SE-plunging synform that results in alternating bands of sinistral and dextral shear fabrics. Syn-kinematic titanites from 5 mylonitic samples give a 720-700°C temperature range, and lower-intercept 206Pb/238U dates of 77.0 Ma, 76.8 Ma, 75.1 Ma, 74.2 Ma, and 74.0 Ma. Subsequent folding of the mylonite is linked to N-directed motion on the Sawmill thrust. 40Ar-39Ar thermochronology ages of 67-66 Ma and onlapping Eocene shales indicate Latest Cretaceous activity on the thrust, prior to Eocene arc collapse. Based on the age of the Tumamait shear zone, we speculate that it is related to sinistral deformation observed in the nearby Alamo Mountain-Piru Creek and the Black Belt shear zones. We attribute the younger Sawmill thrust to collision of the Hess oceanic plateau with the Southern California Batholith after 70 Ma. 
    more » « less
  2. The Southern California Batholith is a ~500-km-wide segment of the Mesozoic California arc that lies between the northern Peninsular Ranges and the southern Sierra Nevada mountains. We use structural data and U-Pb zircon analyses from the eastern San Gabriel mountains to examine how the batholith responded to the onset of the Laramide orogeny during the Late Cretaceous. Zircon analyses show that the middle and lower crust of the batholith was hot and records a magmatic flareup from 90-77 Ma. From 90 to 86 Ma, tonalite of the San Sevaine Lookout intruded a thick package of metasedimentary rock that records a history of reverse displacements, crustal imbrication, and granulite metamorphism prior to tonalite intrusion. During the early stages of the magmatic flare-up, granodiorite dikes were emplaced and soon became tightly folded and disaggregated as younger sheets of comagmatic tonalite intruded. Deformation accompanied the magmatism, forming two parallel shear zones several 100 m thick. These two shear zones, which include the Black Belt Mylonite, are composed of thin (≤10 m) high-strain zones spaced several tens of meters apart. Each discrete high-strain zone contains subparallel layers of mylonite, ultramylonite, cataclasite and pseudotachylyte, all recording oblique sinistral-reverse displacements on gently and moderately dipping surfaces. This architecture, whereby individual high-strain zones are widely spaced and parallel the margins of intruding tonalite sheets, reveals the influence of magma emplacement on shear zone structure. U-Pb zircon geochronology on syn-tectonic dikes indicate that these different styles of deformation all formed within the same 89-85 Ma interval, suggesting that they reflect non-steady flow on deep seismogenic faults. Widespread (garnet) granulite-facies metamorphism and partial melting accompanied intrusion of the tonalites and sinistral- reverse displacements. The ages of undeformed dikes indicate that the deformation was over by 77-75 Ma. Together, these data show that arc magmatism and transpression within the Mesozoic California arc occurred from ~90 until ~75 Ma, implying that flat-slab subduction and the migration of the Laramide orogenic front into the North America interior occurred after ~75 Ma. 
    more » « less
  3. We explore the growth of lower-continental crust by examining the root of the Southern California Batholith, a ~ 500-km-long, paleo-arc segment of the Mesozoic California arc that lies between the southern Sierra Nevada batholith and northern Peninsular Ranges Batholith. We focus on the Cucamonga and San Antonio terranes located in the eastern San Gabriel Mountains where the deep root of the Mesozoic arc is exhumed by the Quaternary Cucamonga thrust fault. This lower- to mid-crustal cross section of the arc allows us to investigate: 1) the timing and rates of Mesozoic arc construction, 2) mechanisms of sediment incorporation into the lower crust, and 3) the interplay between mantle input and crustal recycling during arc magmatic surges. We use detrital zircon geochronology of 4 quartzites and paragneisses to investigate the origin of the lower-crustal Cucamonga paragneiss sequence, and U-Pb petrochronology of 26 orthogneisses to establish the timing of arc magmatism and granulite-facies metamorphism. We find that the Cucamonga paragneisses share broad similarities to Sur Series metasedimentary rocks in the Salinia terrane, suggesting that both were deposited in a Late Paleozoic to Early Mesozoic forearc or intra-arc basin. This basin was progressively underthrust beneath the arc during the Middle Jurassic to Late Cretaceous and was metamorphosed during two high-grade (>750°C) migmatization events at ca. 124 and 89–75 Ma. These metamorphic events were associated with 100 m.y. of arc magmatism that lasted from 175 to 75 Ma and culminated in a magmatic surge from ca. 90–75 Ma. Field observations and petrochronology analyses indicate that partial melting of the underthrust Cucamonga metasedimentary rocks was triggered by emplacement of voluminous, mid-crustal tonalites and granodiorites. Partial melting of the metasedimentary rocks played a subsidiary role relative to mantle input in driving the Late Cretaceous magmatic flare-up event. Our observations demonstrate that tectonic incorporation of sediments into the lower crust led to structural, compositional and rheological changes in the architecture of the arc including vertical thickening. These structural changes created weak zones that preferentially focused deformation and promoted present-day reactivation along the Cucamonga thrust fault. 
    more » « less
  4. We explore the growth of lower-continental crust by examining the root of the Southern California Batholith, a ~ 500-km-long, paleo-arc segment of the Mesozoic California arc that lies between the southern Sierra Nevada batholith and northern Peninsular Ranges Batholith. We focus on the Cucamonga and San Antonio terranes located in the eastern San Gabriel Mountains where the deep root of the Mesozoic arc is exhumed by the Quaternary Cucamonga thrust fault. This lower- to mid-crustal cross section of the arc allows us to investigate: 1) the timing and rates of Mesozoic arc construction, 2) mechanisms of sediment incorporation into the lower crust, and 3) the interplay between mantle input and crustal recycling during arc magmatic surges. We use detrital zircon geochronology of 4 quartzites and paragneisses to investigate the origin of the lower-crustal Cucamonga paragneiss sequence, and U-Pb petrochronology of 26 orthogneisses to establish the timing of arc magmatism and granulite-facies metamorphism. We find that the Cucamonga paragneisses share broad similarities to Sur Series metasedimentary rocks in the Salinia terrane, suggesting that both were deposited in a Late Paleozoic to Early Mesozoic forearc or intra-arc basin. This basin was progressively underthrust beneath the arc during the Middle Jurassic to Late Cretaceous and was metamorphosed during two high-grade (>750°C) migmatization events at ca. 124 and 89–75 Ma. These metamorphic events were associated with 100 m.y. of arc magmatism that lasted from 175 to 75 Ma and culminated in a magmatic surge from ca. 90–75 Ma. Field observations and petrochronology analyses indicate that partial melting of the underthrust Cucamonga metasedimentary rocks was triggered by emplacement of voluminous, mid-crustal tonalites and granodiorites. Partial melting of the metasedimentary rocks played a subsidiary role relative to mantle input in driving the Late Cretaceous magmatic flare-up event. Our observations demonstrate that tectonic incorporation of sediments into the lower crust led to structural, compositional and rheological changes in the architecture of the arc including vertical thickening. These structural changes created weak zones that preferentially focused deformation and promoted present-day reactivation along the Cucamonga thrust fault. 
    more » « less
  5. Abstract We investigated the interplay between deformation and pluton emplacement with the goal of providing insights into the role of transpression and arc magmatism in forming and modifying continental arc crust. We present 39 new laser-ablation–split-stream–inductively coupled plasma–mass spectrometry (LASS-ICP-MS) and secondary ion mass spectrometry (SIMS) 206Pb/238U zircon and titanite dates, together with titanite geochemistry and temperatures from the lower and middle crust of the Mesozoic Median Batholith, New Zealand, to (1) constrain the timing of Cretaceous arc magmatism in the Separation Point Suite, (2) document the timing of titanite growth in low- and high-strain deformational fabrics, and (3) link spatial and temporal patterns of lithospheric-scale transpressional shear zone development to the Cretaceous arc flare-up event. Our zircon results reveal that Separation Point Suite plutonism lasted from ca. 129 Ma to ca. 110 Ma in the middle crust of eastern and central Fiordland. Deformation during this time was focused into a 20-km-wide, arc-parallel zone of deformation that includes previously unreported segments of a complex shear zone that we term the Grebe shear zone. Early deformation in the Grebe shear zone involved development of low-strain fabrics with shallowly plunging mineral stretching lineations from ca. 129 to 125 Ma. Titanites in these rocks are euhedral, are generally aligned with weak subsolidus fabrics, and give rock-average temperatures ranging from 675 °C to 700 °C. We interpret them as relict magmatic titanites that grew prior to low-strain fabric development. In contrast, deformation from ca. 125 to 116 Ma involved movement along subvertical, mylonitic shear zones with moderately to steeply plunging mineral stretching lineations. Titanites in these shear zones are anhedral grains/aggregates that are aligned within mylonitic fabrics and have rock-average temperatures ranging from ∼610 °C to 700 °C. These titanites are most consistent with (re)crystallization in response to deformation and/or metamorphic reactions during amphibolite-facies metamorphism. At the orogen scale, spatial and temporal patterns indicate that the Separation Point Suite flare-up commenced during low-strain deformation in the middle crust (ca. 129–125 Ma) and peaked during high-strain, transpressional deformation (ca. 125–116 Ma), during which time the magmatic arc axis widened to 70 km or more. We suggest that transpressional deformation during the arc flare-up event was an important process in linking melt storage regions and controlling the distribution and geometry of plutons at mid-crustal levels. 
    more » « less