skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Consensus-Enabled Active Learning for Multi-Agent Systems in Ground Classification of Wetlands
Distributed multi-agent unmanned aerial systems (UAS) have the potential to be heavily utilized in environmental monitoring, especially in wetland monitoring. Deep active learning algorithms provide key tools to analyze the sensed images captured during monitoring and interpret them precisely. However, these algorithms demand significant computational resources that limit their use with distributed UAS. In this paper, we propose a novel algorithm for consensus-enabled active learning that drastically reduces the computational demand while increasing the overall model accuracy. Once each of the UAS obtains a labeled subset of images through active learning, we update the weights of the model for three epochs only on the new images to reduce the computational cost, allowing for an increased operational time. The group of UAS communicates the model weights instead of the raw data and then leverages consensus to agree on updated weights. The consensus step mitigates the impact on weights caused by the updates and generalizes the knowledge of each individual UAS to the whole system, which results in increased model accuracy. Our method achieved an average of 11.15% increase in accuracy over 25 acquisition iterations whilst utilizing only 16.8% of the processor time compared to the centralized method of active learning.  more » « less
Award ID(s):
1925368
PAR ID:
10583897
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIAA
Date Published:
Journal Name:
Journal of Aerospace Information Systems
Volume:
22
Issue:
3
ISSN:
1940-3151
Page Range / eLocation ID:
154 to 162
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the cooperative asynchronous multi-agent multi-armed bandits problem, where each agent's active (arm pulling) decision rounds are asynchronous. That is, in each round, only a subset of agents is active to pull arms, and this subset is unknown and time-varying. We consider two models of multi-agent cooperation, fully distributed and leader-coordinated, and propose algorithms for both models that attain near-optimal regret and communications bounds, both of which are almost as good as their synchronous counterparts. The fully distributed algorithm relies on a novel communication policy consisting of accuracy adaptive and on-demand components, and successive arm elimination for decision-making. For leader-coordinated algorithms, a single leader explores arms and recommends them to other agents (followers) to exploit. As agents' active rounds are unknown, a competent leader must be chosen dynamically. We propose a variant of the Tsallis-INF algorithm with low switches to choose such a leader sequence. Lastly, we report numerical simulations of our new asynchronous algorithms with other known baselines. 
    more » « less
  2. In distributed machine learning, where agents collaboratively learn from diverse private data sets, there is a fundamental tension between consensus and optimality . In this paper, we build on recent algorithmic progresses in distributed deep learning to explore various consensus-optimality trade-offs over a fixed communication topology. First, we propose the incremental consensus -based distributed stochastic gradient descent (i-CDSGD) algorithm, which involves multiple consensus steps (where each agent communicates information with its neighbors) within each SGD iteration. Second, we propose the generalized consensus -based distributed SGD (g-CDSGD) algorithm that enables us to navigate the full spectrum from complete consensus (all agents agree) to complete disagreement (each agent converges to individual model parameters). We analytically establish convergence of the proposed algorithms for strongly convex and nonconvex objective functions; we also analyze the momentum variants of the algorithms for the strongly convex case. We support our algorithms via numerical experiments, and demonstrate significant improvements over existing methods for collaborative deep learning. 
    more » « less
  3. Advances in embedded systems have enabled integration of many lightweight sensory devices within our daily life. In particular, this trend has given rise to continuous expansion of wearable sensors in a broad range of applications from health and fitness monitoring to social networking and military surveillance. Wearables leverage machine learning techniques to profile behavioral routine of their end-users through activity recognition algorithms. Current research assumes that such machine learning algorithms are trained offline. In reality, however, wearables demand continuous reconfiguration of their computational algorithms due to their highly dynamic operation. Developing a personalized and adaptive machine learning model requires real-time reconfiguration of the model. Due to stringent computation and memory constraints of these embedded sensors, the training/re-training of the computational algorithms need to be memory- and computation-efficient. In this paper, we propose a framework, based on the notion of online learning, for real-time and on-device machine learning training. We propose to transform the activity recognition problem from a multi-class classification problem to a hierarchical model of binary decisions using cascading online binary classifiers. Our results, based on Pegasos online learning, demonstrate that the proposed approach achieves 97% accuracy in detecting activities of varying intensities using a limited memory while power usages of the system is reduced by more than 40%. 
    more » « less
  4. This paper presents a new recursive Hybrid consensus filter for distributed state estimation on a Hidden Markov Model (HMM), which is well suited to multirobot applications and settings. The proposed algorithm is scalable, robust to network failure and capable of handling non-Gaussian transition and observation models and is, therefore, quite general. No global knowledge of the communication network is assumed. Iterative Conservative Fusion (ICF) is used to reach consensus over potentially correlated priors, while consensus over likelihoods is handled using weights based on a Metropolis Hastings Markov Chain (MHMC). The proposed method is evaluated in a multi-agent tracking problem and a high-dimensional HMM and it is shown that its performance surpasses the competing algorithms. 
    more » « less
  5. null (Ed.)
    Due to Wildfire's huge destructive impacts on agriculture and food production, wildlife habitat, climate, human life and ecosystem, timely discovery of fires enable swift response to fires before they go out of control, in order to minimize the resulting damage and impacts. One of the emerging technologies for fire monitoring is deploying Unmanned Aerial Vehicles, due to their high flexibility and maneuverability, less human risk, and on-demand high quality imaging capabilities. In order to realize a real-time system for fire detection and expansion analysis, fast and high-accuracy image-processing algorithms are required. Several studies have shown that deep learning methods can provide the most accurate response, however the training time can be prohibitively long, especially when using online learning for constant refinement of the developed model. Another challenge is the lack of large datasets for training a deep learning algorithm. In this respect, we propose to use a pretrained mobileNetV2 architecture to implement transfer learning, which requires a smaller dataset and reduces the computational complexity while not compromising the accuracy. In addition, we conduct an effective data augmentation pipeline to simulate some extreme scenarios, which could promise the robustness of our approach. The testing results illustrate that our method maintains a high identification accuracy in different situations - original dataset (99.7%), adding Gaussian blurred (95.3%), and additive Gaussian noise (99.3%). 
    more » « less