skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Seasonal patterns of mercury bioaccumulation in lobsters (Homarus americanus) from Maine
Mercury (Hg) pollutes marine ecosystems and accumulates in benthic species. This ecological case study investigated the temporal accumulation of Hg in American lobster (Homarus americanus; H. Milne Edwards, 1837) from coastal Maine (Casco Bay, ME, USA). We analyzed total Hg levels in legal-sized lobsters (carapace length: 8.255–12.5 cm; n = 34) collected during the early (May–July 1) or late (July 15–October) recreational harvest seasons. Morphometric data show that body size correlates with body weight (R2 = 0.76; p < 0.001), and average body sizes were similar in early and late seasons. The average chelipod size was ~7% larger in male lobsters (p < 0.02), reflecting sexual dimorphism. Hg levels in select tissues from boiled lobsters were analyzed using atomic absorption spectroscopy. Hg in ambient water was undetectable, indicating that Hg in tissues reflects bioaccumulation. Hg content correlated with the lengths (cm) and weights (g) of cephalothorax, carapace, chelipod, and hepatopancreas in both male and female lobsters. Total Hg levels in most tissues were within safe and acceptable limits for human consumption (<0.2 ppm). Compared to late-season lobsters, early-season lobsters had significantly higher Hg levels in tail (~55% increase; 0.130 ppm vs. 0.084 ppm; p < 0.05) and hepatopancreas tissues (~29% increase; 0.099 ppm vs. 0.077 ppm; p < 0.05), suggesting that seasonal factors influence Hg content (e.g., spring river runoff, lobster migration, inert biological cycles). Observed seasonal fluctuations in lobster Hg levels may inform future strategies for mitigating pollution in coastal marine ecosystems.  more » « less
Award ID(s):
2000211
PAR ID:
10584076
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Academia Biology
Date Published:
Journal Name:
Academia Biology
Volume:
3
Issue:
1
ISSN:
2837-4010
Subject(s) / Keyword(s):
biomagnification, coastal marine ecology, ecotoxicology, fishery biology, methylmercury
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mercury (Hg), a neurotoxic heavy metal, is transferred to marine and terrestrial ecosystems through atmospheric transport. Recent studies have highlighted the role of vegetation uptake as a sink for atmospheric elemental mercury (Hg0) and a source of Hg to soils. However, the global magnitude of the Hg0 vegetation uptake flux is highly uncertain, with estimates ranging 1000–4000 Mg per year. To constrain this sink, we compare simulations in the chemical transport model GEOS-Chem with a compiled database of litterfall, throughfall, and flux tower measurements from 93 forested sites. The prior version of GEOS-Chem predicts median Hg0 dry deposition velocities similar to litterfall measurements from Northern hemisphere temperate and boreal forests (~0.03 cm s-1 yet it underestimates measurements from a flux tower study (0.04 cm s-1 vs. 0.07 cm s-1and Amazon litterfall (0.05 cm s-1 vs. 0.17 cm s-1). After revising the Hg0 reactivity within the dry deposition parametrization to match flux tower and Amazon measurements, GEOS-Chem displays improved agreement with the seasonality of atmospheric Hg0 observations in the Northern midlatitudes. Additionally, the modelled bias in Hg0 concentrations in South America decreases from +0.21 ng m-3 +0.05 ng m-3. We calculate a global flux of Hg0 dry deposition to land of 2276 Mg per year, approximately double previous model estimates. The Amazon rainforest contributes 29% of the total Hg0 land sink, yet continued deforestation and climate change threatens the rainforest's stability and thus its role as an important Hg sink. In an illustrative worst-case scenario where the Amazon is completely converted to savannah, GEOS-Chem predicts that an additional 283 Mg Hg per year would deposit to the ocean, where it can bioaccumulate in the marine food chain. Biosphere–atmosphere interactions thus play a crucial role in global Hg cycling and should be considered in assessments of future Hg pollution. 
    more » « less
  2. Abstract. Estuaries are a conduit of mercury (Hg) from watersheds to the coastal ocean, and salt marshes play an important role in coastal Hg cycling. Hg cycling in upland terrestrial ecosystems has been well studied, but processes in densely vegetated salt marsh ecosystems are poorly characterized. We investigated Hg dynamics in vegetation and soils in the Plum Island Sound estuary in Massachusetts, USA, and specifically assessed the role of marsh vegetation for Hg deposition and turnover. Monthly quantitative harvesting of aboveground biomass showed strong linear seasonal increases in Hg associated with plants, with a 4-fold increase in Hg concentration and an 8-fold increase in standing Hg mass from June (3.9 ± 0.2 µg kg−1 and 0.7 ± 0.4 µg m−2, respectively) to November (16.2 ± 2.0 µg kg−1 and 5.7 ± 2.1 µg m−2, respectively). Hg did not increase further in aboveground biomass after plant senescence, indicating physiological controls of vegetation Hg uptake in salt marsh plants. Hg concentrations in live roots and live rhizomes were 11 and 2 times higher than concentrations in live aboveground biomass, respectively. Furthermore, live belowground biomass Hg pools (Hg in roots and rhizomes, 108.1 ± 83.4 µg m−2) were more than 10 times larger than peak standing aboveground Hg pools (9.0 ± 3.3 µg m−2). A ternary mixing model of measured stable Hg isotopes suggests that Hg sources in marsh aboveground tissues originate from about equal contributions of root uptake (∼ 35 %), precipitation uptake (∼ 33 %), and atmospheric gaseous elemental mercury (GEM) uptake (∼ 32 %). These results suggest a more important role of Hg transport from belowground (i.e., roots) to aboveground tissues in salt marsh vegetation than upland vegetation, where GEM uptake is generally the dominant Hg source. Roots and soils showed similar isotopic signatures, suggesting that belowground tissue Hg mostly derived from soil uptake. Annual root turnover results in large internal Hg recycling between soils and plants, estimated at 58.6 µg m−2 yr−1. An initial mass balance of Hg indicates that the salt marsh presently serves as a small net Hg sink for environmental Hg of 5.2 µg m−2 yr−1. 
    more » « less
  3. Water-use efficiency (WUE), weighing the balance between plant transpiration and growth, is a key characteristic of ecosystem functioning and a component of tree drought resistance. Seasonal dynamics of tree-level WUE and its connections with drought variability have not been previously explored in sky-island montane forests. We investigated whole-tree transpiration and stem growth of bristlecone ( Pinus longaeva ) and limber pine ( Pinus flexilis ) within a high-elevation stand in central-eastern Nevada, United States, using sub-hourly measurements over 5 years (2013–2017). A moderate drought was generally observed early in the growing season, whereas interannual variability of summer rains determined drought levels between years, i.e., reducing drought stress in 2013–2014 while enhancing it in 2015–2017. Transpiration and basal area increment (BAI) of both pines were coupled throughout June–July, resulting in a high but relatively constant early season WUE. In contrast, both pines showed high interannual plasticity in late-season WUE, with a predominant role of stem growth in driving WUE. Overall, bristlecone pine was characterized by a lower WUE compared to limber pine. Dry or wet episodes in the late growing season overrode species differences. Our results suggested thresholds of vapor pressure deficit and soil moisture that would lead to opposite responses of WUE to late-season dry or wet conditions. These findings provide novel insights and clarify potential mechanisms modulating tree-level WUE in sky-island ecosystems of semi-arid regions, thereby helping land managers to design appropriate science-based strategies and reduce uncertainties associated with the impact of future climatic changes. 
    more » « less
  4. High levels of methylmercury accumulation in marine biota are a concern throughout the Arctic, where coastal ocean ecosystems received large riverine inputs of mercury (Hg) (40 Mg⋅y −1 ) and sediment (20 Tg⋅y −1 ) during the last decade, primarily from major Russian rivers. Hg concentrations in fish harvested from these rivers have declined since the late 20th century, but no temporal data on riverine Hg, which is often strongly associated with suspended sediments, were previously available. Here, we investigate temporal trends in Russian river particulate Hg (PHg) and total suspended solids (TSS) to better understand recent changes in the Arctic Hg cycle and its potential future trajectories. We used 1,300 measurements of Hg in TSS together with discharge observations made by Russian hydrochemistry and hydrology monitoring programs to examine changes in PHg and TSS concentrations and fluxes in eight major Russian rivers between ca. 1975 and 2010. Due to decreases in both PHg concentrations (micrograms per gram) and TSS loads, annual PHg export declined from 47 to 7 Mg⋅y −1 overall and up to 92% for individual rivers. Modeling of atmospheric Hg deposition together with published inventories on reservoir establishment and industrial Hg release point to decreased pollution and sedimentation within reservoirs as predominant drivers of declining PHg export. We estimate that Russian rivers were the primary source of Hg to the Arctic Ocean in the mid to late 20th century. 
    more » « less
  5. IntroductionChanges in temperature can fundamentally transform how species interact, causing wholesale shifts in ecosystem dynamics and stability. Yet we still have a limited understanding of how temperature-dependence in physiology drives temperature-dependence in species-interactions. For predator-prey interactions, theory predicts that increases in temperature drive increases in metabolism and that animals respond to this increased energy expenditure by ramping up their food consumption to meet their metabolic demand. However, if consumption does not increase as rapidly with temperature as metabolism, increases in temperature can ultimately cause a reduction in consumer fitness and biomass via starvation. MethodsHere we test the hypothesis that increases in temperature cause more rapid increases in metabolism than increases in consumption using the California spiny lobster (Panulirus interruptus) as a model system. We acclimated individual lobsters to temperatures they experience sacross their biogeographic range (11, 16, 21, or 26°C), then measured whether lobster consumption rates are able to meet the increased metabolic demands of rising temperatures. Results and discussionWe show positive effects of temperature on metabolism and predation, but in contrast to our hypothesis, rising temperature caused lobster consumption rates to increase at a faster rate than increases in metabolic demand, suggesting that for the mid-range of temperatures, lobsters are capable of ramping up consumption rates to increase their caloric demand. However, at the extreme ends of the simulated temperatures, lobster biology broke down. At the coldest temperature, lobsters had almost no metabolic activity and at the highest temperature, 33% of lobsters died. Our results suggest that temperature plays a key role in driving the geographic range of spiny lobsters and that spatial and temporal shifts in temperature can play a critical role in driving the strength of species interactions for a key predator in temperate reef ecosystems. 
    more » « less