skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emergence of exchange bias in van der Waals magnetic alloy CrxPt1−xTe2
Abstract CrxPt1−xTe2is a recently developed van der Waals magnetic alloy noted for its stability under ambient conditions. Here, we report the emergence of an exchange bias effect in CrxPt1−xTe2, without typical exchange bias sources such as an adjacent antiferromagnetic layer. We find that the exchange bias is present forx = 0.45 and absent forx = 0.35, which is correlated to the presence of a Cr modulation where the Cr concentration alternates each vdW layer (modulation period of 2 layers) forx ≥ 0.4. We perform Monte Carlo simulations utilizing exchange parameters from first-principles calculations, which recreate the exchange bias in hysteresis loops of Cr0.45Pt0.55Te2. From our simulations, we infer the source of exchange bias to be magnetic moments locked into free energy minima that resist magnetization reversal. This work presents a way to introduce desirable magnetic properties to van der Waals magnets.  more » « less
Award ID(s):
2011876
PAR ID:
10584103
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
npj Spintronics
Volume:
2
Issue:
1
ISSN:
2948-2119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Magnetic van der Waals heterostructures provide a unique platform to study magnetism and spintronics device concepts in the 2D limit. Here, studies of exchange bias from the van der Waals antiferromagnet CrSBr acting on the van der Waals ferromagnet Fe3GeTe2(FGT) are reported. The orientation of the exchange bias is along the in‐plane easy axis of CrSBr, perpendicular to the out‐of‐plane anisotropy of the FGT, inducing a strongly tilted magnetic configuration in the FGT. Furthermore, the in‐plane exchange bias provides sufficient symmetry breaking to allow deterministic spin–orbit torque switching of the FGT in CrSBr/FGT/Pt samples at zero applied magnetic field. A minimum thickness of the CrSBr of >10 nm is needed to provide a non‐zero exchange bias at 30 K. 
    more » « less
  2. Abstract Antiferromagnetic van der Waals‐typeM2P2X6compounds provide a versatile material platform for studying 2D magnetism and relevant phenomena. Establishing ferromagnetism in 2D materials is technologically valuable. Though magnetism is generally tunable via a chemical way, it is challenging to induce ferromagnetism with isovalent chalcogen and bimetallic substitutions inM2P2X6. Here, we report co‐substitution of Cu1+and Cr3+for Ni2+in Ni2P2S6, creating CuxNi2(1‐x)CrxP2S6medium‐entropy alloys spanning a full substitution range (x= 0 to 1). Such substitution strategy leads to a unique evolution in crystal structure and magnetic phases that are distinct from traditional isovalent bimetallic doping, with Cu and Cr co‐substitution enhancing ferromagnetic correlations and generating a weak ferromagnetic phase in intermediate compositions. This aliovalent substitution strategy offers a universal approach for tuning layered magnetism in antiferromagnetic systems, which along with the potential for light‐matter interaction and high‐temperature ferroelectricity, can enable multifunctional device applications. 
    more » « less
  3. All van der Waals Fe 3 GeTe 2 /Cr 2 Ge 2 Te 6 /graphite magnetic heterojunctions have been fabricated via mechanical exfoliation and stacking, and their magnetotransport properties are studied in detail. At low bias voltages, large negative junction magnetoresistances have been observed and are attributed to spin-conserving tunneling transport across an insulating Cr 2 Ge 2 Te 6 layer. With increasing bias, a crossover to Fowler–Nordheim tunneling takes place. The negative sign of the tunneling magnetoresistance suggests that the bottom of a conduction band in Cr 2 Ge 2 Te 6 belongs to minority spins, opposite to the findings of some first-principles calculations. This work shows that the vdW heterostructures based on 2D magnetic insulators are a valuable platform to gain further insight into spin polarized tunneling transport, which is the basis for pursuing high performance spintronic devices and a large variety of quantum phenomena. 
    more » « less
  4. Abstract Recent developments in 2D magnetic materials have motivated the search for new van der Waals magnetic materials, especially Ising‐type magnets with strong magnetic anisotropy. Fe‐basedMPX3(M= transition metal,X= chalcogen) compounds such as FePS3and FePSe3both exhibit an Ising‐type magnetic order, but FePSe3receives much less attention compared to FePS3. This work focuses on establishing the strategy to engineer magnetic anisotropy and exchange interactions in this less‐explored compound. Through chalcogen and metal substitutions, the magnetic anisotropy is found to be immune against S substitution for Se whereas tunable only with heavy Mn substitution for Fe. In particular, Mn substitution leads to a continuous rotation of magnetic moments from the out‐of‐plane direction toward the in‐plane. Furthermore, the magnetic ordering temperature displays non‐monotonic doping dependence for both chalcogen and metal substitutions but due to different mechanisms. These findings provide deeper insight into the Ising‐type magnetism in this important van der Waals material, shedding light on the study of other Ising‐type magnetic systems as well as discovering novel 2D magnets for potential applications in spintronics. 
    more » « less
  5. Abstract The discovery of long-range magnetic ordering in atomically thin materials catapulted the van der Waals (vdW) family of compounds into an unprecedented popularity, leading to potentially important technological applications in magnetic storage and magneto-transport devices, as well as photoelectric sensors. With the potential for the use of vdW materials in space exploration technologies it is critical to understand how the properties of such materials are affected by ionizing proton irradiation. Owing to their robust intra-layer stability and sensitivity to external perturbations, these materials also provide excellent opportunities for studying proton irradiation as a non-destructive tool for controlling their magnetic properties. Specifically, the exfoliable Cr2Si2Te6(CST) is a ferromagnetic semiconductor with the Curie temperature (TC) of ∼32 K. Here, we have investigated the magnetic properties of CST upon proton irradiation as a function of fluence (1 × 1015, 5 × 1015, 1 × 1016, 5 × 1016, and 1 × 1018H+/cm−2) by employing variable-temperature, variable-field magnetization measurements, and detail how the magnetization, magnetic anisotropy vary as a function of proton fluence across the magnetic phase transition. While theTCremains constant as a function of proton fluence, we observed that the saturation magnetization and magnetic anisotropy diverge at the proton fluence of 5 × 1016H+/cm−2, which is prominent in the ferromagnetic phase, in particular.This work demonstrates that proton irradiation is a feasible method for modifying the magnetic properties and local magnetic interactions of vdWs crystals, which represents a significant step forward in the design of future spintronic and magneto-electronic applications. 
    more » « less