skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The mechanobiology of nuclear phase separation
The cell nucleus can be thought of as a complex, dynamic, living material, which functions to organize and protect the genome and coordinate gene expression. These functions are achieved via intricate mechanical and biochemical interactions among its myriad components, including the nuclear lamina, nuclear bodies, and the chromatin itself. While the biophysical organization of the nuclear lamina and chromatin have been thoroughly studied, the concept that liquid–liquid phase separation and related phase transitions play a role in establishing nuclear structure has emerged only recently. Phase transitions are likely to be intimately coupled to the mechanobiology of structural elements in the nucleus, but their interplay with one another is still not understood. Here, we review recent developments on the role of phase separation and mechanics in nuclear organization and discuss the functional implications in cell physiology and disease states.  more » « less
Award ID(s):
2011750
PAR ID:
10584114
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Bioengineering
Volume:
6
Issue:
2
ISSN:
2473-2877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Of the three types of cytoskeleton known in animals—actin, microtubules, and intermediate filaments—only actin and microtubules exist in plants. Both play important roles in cellular shaping, organelle movement, organization of the endomembrane system, and cell signaling. An emerging, but often overlooked role of the plant cytoskeleton is its dynamic and mutually influential interaction with the nucleus. Here, we summarize recent advances in understanding the role of the cytoskeleton in plant nuclear movement in different biological contexts, a role for nuclear envelope‐associated proteins in reorganizing the actin and microtubule cytoskeleton, and the molecular nature of the nucleus‐cytoskeleton interface and specific proteins contributing to it. In animals, the nucleoskeleton consists of the nuclear lamina, an intermediate‐filament meshwork underlying the nuclear envelope. Plants have evolved an equivalent of this structure, built by different types of proteins. Here, we highlight recent advances in understanding its filamentous organization, newly discovered protein interactions connecting it to nuclear pores, and exciting new evidence that—just like the animal lamina—the plant lamina is involved in chromatin reorganization and epigenetic changes. Together, these new developments create new opportunities toward a deeper understanding of this important regulatory connection between the cytoskeleton and the cell's largest organelle. 
    more » « less
  2. Abstract Nuclear lamins have been considered an important structural element of the nucleus. The nuclear lamina is thought both to shield DNA from excessive mechanical forces and to transmit mechanical forces onto the DNA. However, to date there is not yet a technical approach to directly measure mechanical forces on nuclear lamins at the protein level. To overcome this limitation, we developed a nanobody-based intermolecular tension FRET biosensor capable of measuring the mechanical strain of lamin filaments. Using this sensor, we were able to show that the nuclear lamina is subjected to significant force. These forces are dependent on nuclear volume, actomyosin contractility, functional LINC complex, chromatin condensation state, cell cycle, and EMT. Interestingly, large forces were also present on nucleoplasmic lamins, indicating that these lamins may also have an important mechanical role in the nucleus. Overall, we demonstrate that the nanobody-based approach allows construction of biosensors for complex protein structures for mechanobiology studies. 
    more » « less
  3. Nuclear condensates play many important roles in chromatin functions, but how cells regulate their nucleation and growth within the complex nuclear environment is not well understood. Here, we report how condensate properties and chromatin mechanics dictate condensate growth dynamics in the nucleus. We induced condensates with distinct properties using different proteins in human cell nuclei and monitored their growth. We revealed two key physical mechanisms that underlie droplet growth: diffusion-driven or ripening-dominated growth. To explain the experimental observations, we developed a quantitative theory that uncovers the mechanical role of chromatin and condensate material properties in regulating condensate growth in a heterogeneous environment. By fitting our theory to experimental data, we find that condensate surface tension is critical in determining whether condensates undergo elastic or Ostwald ripening. Our model also predicts that chromatin heterogeneity can influence condensate nucleation and growth, which we validated by experimentally perturbing the chromatin organization and controlling condensate nucleation. By combining quantitative experimentation with theoretical modeling, our work elucidates how condensate surface tension and chromatin heterogeneity govern nuclear condensate ripening, implying that cells can control both condensate properties and the chromatin organization to regulate condensate growth in the nucleus. 
    more » « less
  4. null (Ed.)
    Abstract Cohesin plays an essential role in chromatin loop extrusion, but its impact on a compartmentalized nuclear architecture, linked to nuclear functions, is less well understood. Using live-cell and super-resolved 3D microscopy, here we find that cohesin depletion in a human colon cancer derived cell line results in endomitosis and a single multilobulated nucleus with chromosome territories pervaded by interchromatin channels. Chromosome territories contain chromatin domain clusters with a zonal organization of repressed chromatin domains in the interior and transcriptionally competent domains located at the periphery. These clusters form microscopically defined, active and inactive compartments, which likely correspond to A/B compartments, which are detected with ensemble Hi-C. Splicing speckles are observed nearby within the lining channel system. We further observe that the multilobulated nuclei, despite continuous absence of cohesin, pass through S-phase with typical spatio-temporal patterns of replication domains. Evidence for structural changes of these domains compared to controls suggests that cohesin is required for their full integrity. 
    more » « less
  5. Abstract The review begins with a concise description of the principles of phase separation. This is followed by a comprehensive section on phase separation of chromatin, in which we recount the 60 years history of chromatin aggregation studies, discuss the evidence that chromatin aggregation intrinsically is a physiologically relevant liquid–solid phase separation (LSPS) process driven by chromatin self-interaction, and highlight the recent findings that under specific solution conditions chromatin can undergo liquid–liquid phase separation (LLPS) rather than LSPS. In the next section of the review, we discuss how certain chromatin-associated proteins undergo LLPS in vitro and in vivo. Some chromatin-binding proteins undergo LLPS in purified form in near-physiological ionic strength buffers while others will do so only in the presence of DNA, nucleosomes, or chromatin. The final section of the review evaluates the solid and liquid states of chromatin in the nucleus. While chromatin behaves as an immobile solid on the mesoscale, nucleosomes are mobile on the nanoscale. We discuss how this dual nature of chromatin, which fits well the concept of viscoelasticity, contributes to genome structure, emphasizing the dominant role of chromatin self-interaction. 
    more » « less