skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 21, 2026

Title: Mid-wave infrared laser absorption tomography of nitrogen oxides for spatially resolved quantitative thermochemistry in H 2 -N 2 O flames
A tomographic laser absorption spectroscopy technique, using mid-wave infrared light sources, is presented as a quantitative method to spatially resolve the mole fraction and temperature in small-diameter reacting flows relevant to the combustion of nitrogen-based fuels and propellants, with particular applicability to the study of green propulsion concepts. Tunable quantum and interband cascade lasers are used to spectrally resolve multiple rovibrational transitions near 4.42 and 5.18 µm to measure N2O, NO, and H2O mole fractions, as well as gas temperature in an axially symmetric H2-N2O premixed jet flame. Signal processing methods for direct N2O thermometry utilizing a Boltzmann regression are detailed for the experiment, including considerations for the tomographic reconstruction of axial and radial profiles of thermochemical structure for the flame. The tomographic absorption spectroscopy technique is demonstrated to recover radially resolved N2O, NO, and H2O mole fractions for multiple planes at different heights above the jet exit, revealing distinct reaction zones in the jet flame associated with the production of each H2O and NO surrounding the relatively cool reactant core containing N2O.  more » « less
Award ID(s):
2135789 2339502
PAR ID:
10584310
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Applied Optics
Volume:
64
Issue:
16
ISSN:
1559-128X; APOPAI
Format(s):
Medium: X Size: Article No. D103
Size(s):
Article No. D103
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pulsed dielectric barrier discharges (DBD) in He–H 2 O and He–H 2 O–O 2 mixtures are studied in near atmospheric conditions using temporally and spatially resolved quantitative 2D imaging of the hydroxyl radical (OH) and hydrogen peroxide (H 2 O 2 ). The primary goal was to detect and quantify the production of these strongly oxidative species in water-laden helium discharges in a DBD jet configuration, which is of interest for biomedical applications such as disinfection of surfaces and treatment of biological samples. Hydroxyl profiles are obtained by laser-induced fluorescence (LIF) measurements using 282 nm laser excitation. Hydrogen peroxide profiles are measured by photo-fragmentation LIF (PF-LIF), which involves photo-dissociating H 2 O 2 into OH with a 212.8 nm laser sheet and detecting the OH fragments by LIF. The H 2 O 2 profiles are calibrated by measuring PF-LIF profiles in a reference mixture of He seeded with a known amount of H 2 O 2 . OH profiles are calibrated by measuring OH-radical decay times and comparing these with predictions from a chemical kinetics model. Two different burst discharge modes with five and ten pulses per burst are studied, both with a burst repetition rate of 50 Hz. In both cases, dynamics of OH and H 2 O 2 distributions in the afterglow of the discharge are investigated. Gas temperatures determined from the OH-LIF spectra indicate that gas heating due to the plasma is insignificant. The addition of 5% O 2 in the He admixture decreases the OH densities and increases the H 2 O 2 densities. The increased coupled energy in the ten-pulse discharge increases OH and H 2 O 2 mole fractions, except for the H 2 O 2 in the He–H 2 O–O 2 mixture which is relatively insensitive to the additional pulses. 
    more » « less
  2. Abstract The development and refinement of NOx chemical kinetic mechanisms have been instrumental in understanding and reducing NOx formation. However, relatively little work has been performed with NOx species as the oxidizer, and such experiments can provide unique insights into NOx kinetics. Furthermore, speciation data can often provide useful information that complements global measurements such as ignition delay times in facilitating mechanism refinement. To provide such speciation data in the H2‐NO2system, H2O measurements were performed using a fixed‐wavelength, direct absorption laser diagnostic near 1.39 µm behind reflected shock waves in fuel‐lean, near‐stoichiometric, and fuel‐rich mixtures of H2and NO2highly diluted in argon. Experiments were performed between 917 and 1782 K near atmospheric pressure. The H2O profiles obtained herein are markedly different from those using O2as the oxidizer obtained in a previous study. The GRI 3.0 mechanism was found to greatly underestimate the H2O formation, whereas two modern mechanisms were found to predict the H2O formation quite accurately except at colder temperatures for fuel‐rich conditions. Explanations for the differences between these mechanisms are given and discussed, with the conclusion that older mechanisms such as GRI 3.0 should not be used to model hydrocarbon/NOx combustion chemistry as they are lacking several key reactions and species, namely NO3and HONO. The discrepancy between models and data at lower temperatures could not be reconciled even when modifying two of the most‐sensitive reaction rates. To the best of the authors’ knowledge, this study presents the first shock‐tube speciation study in the H2‐NO2system. 
    more » « less
  3. Abstract Planar laser-induced fluorescence (LIF) was employed to measure the absolute density of hydroxyl radicals (OH) in the effluent of the COST Reference Microplasma Jet for two feed gas mixtures: He/H2O and He/O2. Experiments were conducted with the effluent propagating into air and N2environments. For the He/H2O case, measurements were also performed with the effluent impinging on a solid target at varying distances from the jet nozzle. Calibration of the OH-LIF signal from the COST-Jet was achieved by comparing it to a reference signal generated by the photofragmentation of H2O2. Results demonstrated that OH densities were sustained longer when the effluent propagates in a nitrogen environment compared to air, particularly with water added to the feed gas. The broader OH distribution in N2suggests slower consumption due to the absence of oxygen, which accelerates OH depletion in air via reactions involving O2and HO2. Even when water was not added to the feed, as in the He/O2case, appreciable OH densities were observed, due to gas impurities and reactive species interactions with atmospheric humidity, forming reaction fronts that delineate the gas flow. Two-dimensional fluid dynamics simulations elucidated the influence of atmospheric gas entrainment and solid targets on the OH distribution. Experimental trends were further compared with a zero-dimensional chemistry model to explore OH production and consumption mechanisms in air and nitrogen environments. 
    more » « less
  4. We present a new set of reference materials, the ND70‐series, forin situmeasurement of volatile elements (H2O, CO2, S, Cl, F) in silicate glass of basaltic composition. The materials were synthesised in piston cylinders at pressures of 1 to 1.5 GPa under volatile‐undersaturated conditions. They span mass fractions from 0 to 6%m/mH2O, from 0 to 1.6%m/mCO2and from 0 to 1%m/mS, Cl and F. The materials were characterised by elastic recoil detection analysis for H2O, by nuclear reaction analysis for CO2, by elemental analyser for CO2, by Fourier transform infrared spectroscopy for H2O and CO2, by secondary ion mass spectrometry for H2O, CO2, S, Cl and F, and by electron probe microanalysis for CO2, S, Cl and major elements. Comparison between expected and measured volatile amounts across techniques and institutions is excellent. It was found however that SIMS measurements of CO2mass fractions using either Cs+or Oprimary beams are strongly affected by the glass H2O content. Reference materials have been made available to users at ion probe facilities in the US, Europe and Japan. Remaining reference materials are preserved at the Smithsonian National Museum of Natural History where they are freely available on loan to any researcher. 
    more » « less
  5. Reactions of the bicompartmental bis(phenolato) compound 6,6′-methylenebis(2-((bis(pyridin-2-ylmethyl)amino)methyl)-4-chlorophenol)hemihydrate (H 2 L ½H 2 O) with 3d metal( ii ) ions afforded novel fully structurally characterized bridged acetato dinuclear complexes [Mn 2 (HL)(μ 1,2 -OAc) 2 ]PF 6 (1) [Zn 2 (HL)(μ 1,2 -OAc)(H 2 O) 0.75 (MeOH) 0.25 ](PF 6 ) 2 ·0.45(H 2 O) (5) and [Cd 2 (HL)(μ 1,1,2 -OAc)(OAc)(H 2 O)]PF 6 ·H 2 O (6) as well as the polymeric bridged-azido tetranuclear catena -[Cu 4 (HL) 2 (μ 1,1 -N 3 ) 2 (μ 1,3 -N 3 ) 2 ](NO 3 ) 2 ·5H 2 O (4). The complex [Cu 4 (HL) 2 (ClO 4 ) 3 (H 2 O) 5 ](ClO 4 ) 3 ·5H 2 O (2) was partially characterized. In addition, three more dinuclear complexes [Cu 2 (H 2 L)(NO 3 ) 2 (H 2 O) 2 ](NO 3 ) 2 (3), [Cu 2 (HL)(OAc)(CH 3 OH)](PF 6 ) 2 (7) and [Cu 2 (HL)(NCS) 2 ]NO 3 ·2H 2 O (8) were also isolated. All complexes were characterized by CHN elemental analysis, IR and UV-Vis spectroscopy, ESI-MS, conductivity measurements and X-ray single crystal crystallography for compounds 1, 4, 5 and 6, where the bis(phenolato) ligand displayed different deprotonation (H 2 L, HL − and L 2− ). The magnetic susceptibility measurements over the temperature range 2–300 K revealed very weak antiferromagnetic coupling in dimanganese( ii ) 1 ( J = −1.64(1) cm −1 ) and almost negligible magnetic interaction in dicopper( ii ) 2 ( J = 0(3) cm −1 ). In the azido catena -[Cu 4 (HL) 2 (μ 1,1 -N 3 ) 2 (μ 1,3 -N 3 ) 2 ](NO 3 ) 2 ·5H 2 O (4) complex, the J value of −133(3) cm −1 was obtained upon moderate-to-strong antiferromagnetic coupling through the di-μ 1,3 -N 3 -bridged dicopper( ii ) unit with no magnetic interaction between the two copper( ii ) ions in the di-μ 1,1 -N 3 -bridged unit. 
    more » « less