skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using human-in-the-loop optimization for guiding manual prosthesis adjustments: a proof-of-concept study
Introduction:Human-in-the-loop optimization algorithms have proven useful in optimizing complex interactive problems, such as the interaction between humans and robotic exoskeletons. Specifically, this methodology has been proven valid for reducing metabolic cost while wearing robotic exoskeletons. However, many prostheses and orthoses still consist of passive elements that require manual adjustments of settings. Methods:In the present study, we investigated if human-in-the-loop algorithms could guide faster manual adjustments in a procedure similar to fitting a prosthesis. Eight healthy participants wore a prosthesis simulator and walked on a treadmill at 0.8 ms−1under 16 combinations of shoe heel height and pylon height. A human-in-the-loop optimization algorithm was used to find an optimal combination for reducing the loading rate on the limb contralateral to the prosthesis simulator. To evaluate the performance of the optimization algorithm, we used a convergence criterium. We evaluated the accuracy by comparing it against the optimum from a full sweep of all combinations. Results:In five out of the eight participants, the human-in-the-loop optimization reduced the time taken to find an optimal combination; however, in three participants, the human-in-the-loop optimization either converged by the last iteration or did not converge. Discussion:Findings from this study show that the human-in-the-loop methodology could be helpful in tasks that require manually adjusting an assistive device, such as optimizing an unpowered prosthesis. However, further research is needed to achieve robust performance and evaluate applicability in persons with amputation wearing an actual prosthesis.  more » « less
Award ID(s):
2203143
PAR ID:
10584386
Author(s) / Creator(s):
; ;
Publisher / Repository:
Frontiers / Pubmed
Date Published:
Journal Name:
Frontiers in Robotics and AI
Volume:
10
ISSN:
2296-9144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Human-in-the-loop optimization allows for individualized device control based on measured human performance. This technique has been used to produce large reductions in energy expenditure during walking with exoskeletons but has not yet been applied to prosthetic devices. In this series of case studies, we applied human-in-the-loop optimization to the control of an active ankle-foot prosthesis used by participants with unilateral transtibial amputation. We optimized the parameters of five control architectures that captured aspects of successful exoskeletons and commercial prostheses, but none resulted in significantly lower metabolic rate than generic control. In one control architecture, we increased the exposure time per condition by a factor of five, but the optimized controller still resulted in higher metabolic rate. Finally, we optimized for self-reported comfort instead of metabolic rate, but the resulting controller was not preferred. There are several reasons why human-in-the-loop optimization may have failed for people with amputation. Control architecture is an unlikely cause given the variety of controllers tested. The lack of effect likely relates to changes in motor adaptation, learning, or objectives in people with amputation. Future work should investigate these potential causes to determine whether human-in-the-loop optimization for prostheses could be successful. 
    more » « less
  2. Robotic lower-limb exoskeletons can augment human mobility, but current systems require extensive, context-specific considerations, limiting their real-world viability. Here, we present a unified exoskeleton control framework that autonomously adapts assistance on the basis of instantaneous user joint moment estimates from a temporal convolutional network (TCN). When deployed on our hip exoskeleton, the TCN achieved an average root mean square error of 0.142 newton-meters per kilogram across 35 ambulatory conditions without any user-specific calibration. Further, the unified controller significantly reduced user metabolic cost and lower-limb positive work during level-ground and incline walking compared with walking without wearing the exoskeleton. This advancement bridges the gap between in-lab exoskeleton technology and real-world human ambulation, making exoskeleton control technology viable for a broad community. 
    more » « less
  3. This paper presents a biomechanics‐based, user‐adaptive variable impedance controller designed to enhance the performance of coupled human–robot systems during motion. The controller integrates the biomechanical characteristics of human limbs and dynamically adjusts the robotic impedance parameters—specifically damping, stiffness, and equilibrium trajectory—based on real‐time estimations of the user's intent and direction of motion. The primary goal is to minimize the energy expenditure of the coupled human–robot system while maintaining system passivity. To address uncertainties in human behavior and noisy observations, the controller employs Bayesian optimization combined with a Gaussian process. To validate the proposed approach, human experiments are conducted using a standard robotic arm manipulator. The results demonstrate that the controller eliminates the need for manual parameter tuning, a process that is typically time‐consuming. A comparative analysis against two variable impedance controllers without user‐adaptive parameter adjustments reveal significant benefits, with the controller improving combined performance metrics—such as accuracy, speed, user effort, and smoothness—by over 13%. Notably, all participants in the study preferred the optimized controller over the alternatives. These findings highlight the effectiveness of the biomechanics‐based, user‐adaptive variable impedance control approach and its potential to enhance physical human–robot interaction in various applications that involve repetitive or continuous motion. 
    more » « less
  4. Exoskeletons have the potential to support daily activities by assisting the movement performance. Previous studies have shown that powered elbow exoskeletons can reduce muscle effort during continuous cyclic movement. However, natural movements have embedded stationary hold periods as well as transitions between postures. The human performance when using exoskeletons for more natural movements should be evaluated. In this study, we implemented visual and haptic electromyography (EMG) biofeedback to help people use an upper limb exoskeleton to perform a target position matching task. Participants (n=36) did not significantly reduce their muscle effort during hold periods when provided with biofeedback. Participants had difficulty relaxing their muscles at more flexed postures during hold periods, suggesting that they continued to provide effort instead of taking advantage of the device. To fully benefit from robotic exoskeletons, additional training and more advanced controllers might be needed. 
    more » « less
  5. null (Ed.)
    Powered ankle exoskeletons that apply assistive torques with optimized timing and magnitude can reduce metabolic cost by ∼10% compared to normal walking. However, finding individualized optimal control parameters is time consuming and must be done independently for different walking modes (e.g., speeds, slopes). Thus, there is a need for exoskeleton controllers that are capable of continuously adapting torque assistance in concert with changing locomotor demands. One option is to use a biologically inspired, model-based control scheme that can capture the adaptive behavior of the human plantarflexors during natural gait. Here, based on previously demonstrated success in a powered ankle-foot prosthesis, we developed an ankle exoskeleton controller that uses a neuromuscular model (NMM) comprised of a Hill type musculotendon driven by a simple positive force feedback reflex loop. To examine the effects of NMM reflex parameter settings on (i) ankle exoskeleton mechanical performance and (ii) users’ physiological response, we recruited nine healthy, young adults to walk on a treadmill at a fixed speed of 1.25 m/s while donning bilateral tethered robotic ankle exoskeletons. To quantify exoskeleton mechanics, we measured exoskeleton torque and power output across a range of NMM controller Gain (0.8–2.0) and Delay (10–40 ms) settings, as well as a High Gain/High Delay (2.0/40 ms) combination. To quantify users’ physiological response, we compared joint kinematics and kinetics, ankle muscle electromyography and metabolic rate between powered and unpowered/zero-torque conditions. Increasing NMM controller reflex Gain caused increases in average ankle exoskeleton torque and net power output, while increasing NMM controller reflex Delay caused a decrease in net ankle exoskeleton power output. Despite systematic reduction in users’ average biological ankle moment with exoskeleton mechanical assistance, we found no NMM controller Gain or Delay settings that yielded changes in metabolic rate. Post hoc analyses revealed weak association at best between exoskeleton and biological mechanics and changes in users’ metabolic rate. Instead, changes in users’ summed ankle joint muscle activity with powered assistance correlated with changes in their metabolic energy use, highlighting the potential to utilize muscle electromyography as a target for on-line optimization in next generation adaptive exoskeleton controllers. 
    more » « less