We construct conforming finite element elasticity complexes on Worsey–Farin splits in three dimensions. Spaces for displacement, strain, stress, and the load are connected in the elasticity complex through the differential operators representing deformation, incompatibility, and divergence. For each of these component spaces, a corresponding finite element space on Worsey–Farin meshes is exhibited. Unisolvent degrees of freedom are developed for these finite elements, which also yields commuting (cochain) projections on smooth functions. A distinctive feature of the spaces in these complexes is the lack of extrinsic supersmoothness at subsimplices of the mesh. Notably, the complex yields the first (strongly) symmetric stress finite element with no vertex or edge degrees of freedom in three dimensions. Moreover, the lowest order stress space uses only piecewise linear functions which is the lowest feasible polynomial degree for the stress space. 
                        more » 
                        « less   
                    
                            
                            Optimal Geometric Multigrid Preconditioners for HDG-P0 Schemes for the reaction-diffusion equation and the Generalized Stokes equations
                        
                    
    
            We present the lowest-order hybridizable discontinuous Galerkin schemes with numerical integration (quadrature), denoted as HDG-P0 for the reaction-diffusion equation and the generalized Stokes equations on conforming simplicial meshes in two- and three-dimensions. Here by lowest order, we mean that the (hybrid) finite element space for the global HDG facet degrees of freedom (DOFs) is the space of piecewise constants on the mesh skeleton. A discontinuous piecewise linear space is used for the approximation of the local primal unknowns. We give the optimal a priori error analysis of the proposed HDG-P0 schemes, which hasn’t appeared in the literature yet for HDG discretizations as far as numerical integration is concerned. Moreover, we propose optimal geometric multigrid preconditioners for the statically condensed HDG-P0 linear systems on conforming simplicial meshes. In both cases, we first establish the equivalence of the statically condensed HDG system with a (slightly modified) nonconforming Crouzeix–Raviart (CR) discretization, where the global (piecewise-constant) HDG finite element space on the mesh skeleton has a natural one-to-one correspondence to the nonconforming CR (piecewise-linear) finite element space that live on the whole mesh. This equivalence then allows us to use the well-established nonconforming geometry multigrid theory to precondition the condensed HDG system. Numerical results in two- and three-dimensions are presented to verify our theoretical findings. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2012031
- PAR ID:
- 10451742
- Date Published:
- Journal Name:
- ESAIM: Mathematical Modelling and Numerical Analysis
- Volume:
- 57
- Issue:
- 3
- ISSN:
- 2822-7840
- Page Range / eLocation ID:
- 1553 to 1587
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We present a divergence-free and $$\Hsp\LRp{div}$$-conforming hybridized discontinuous Galerkin (HDG) method and a computationally efficient variant called embedded-HDG (E-HDG) for solving stationary incompressible viso-resistive magnetohydrodynamic (MHD) equations. The proposed E-HDG approach uses continuous facet unknowns for the vector-valued solutions (velocity and magnetic fields) while it uses discontinuous facet unknowns for the scalar variable (pressure and magnetic pressure). This choice of function spaces makes E-HDG computationally far more advantageous, due to the much smaller number of degrees of freedom, compared to the HDG counterpart. The benefit is even more significant for three-dimensional/high-order/fine mesh scenarios. On simplicial meshes, the proposed methods with a specific choice of approximation spaces are well-posed for linear(ized) MHD equations. For nonlinear MHD problems, we present a simple approach exploiting the proposed linear discretizations by using a Picard iteration. The beauty of this approach is that the divergence-free and $$\Hsp\LRp{div}$$-conforming properties of the velocity and magnetic fields are automatically carried over for nonlinear MHD equations. We study the accuracy and convergence of our E-HDG method for both linear and nonlinear MHD cases through various numerical experiments, including two- and three-dimensional problems with smooth and singular solutions. The numerical examples show that the proposed methods are pressure robust, and the divergence of the resulting velocity and magnetic fields is machine zero for both smooth and singular problems.more » « less
- 
            Abstract We propose a uniform block-diagonal preconditioner for condensed $$H$$(div)-conforming hybridizable discontinuous Galerkin schemes for parameter-dependent saddle point problems, including the generalized Stokes equations and the linear elasticity equations. An optimal preconditioner is obtained for the stiffness matrix on the global velocity/displacement space via the auxiliary space preconditioning technique (Xu (1994) The Auxiliary Space Method and Optimal Multigrid Preconditioning Techniques for Unstructured Grids, vol. 56. International GAMM-Workshop on Multi-level Methods (Meisdorf), pp. 215–235). A spectrally equivalent approximation to the Schur complement on the element-wise constant pressure space is also constructed, and an explicit computable exact inverse is obtained via the Woodbury matrix identity. Finally, the numerical results verify the robustness of our proposed preconditioner with respect to model parameters and mesh size.more » « less
- 
            Abstract We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart–Thomas, and Brezzi–Douglas–Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties.more » « less
- 
            It has been extensively studied in the literature that solving Maxwell equations is very sensitive to mesh structures, space conformity and solution regularity. Roughly speaking, for almost all the methods in the literature, optimal convergence for low-regularity solutions heavily relies on conforming spaces and highly regular simplicial meshes. This can be a significant limitation for many popular methods based on broken spaces and non-conforming or polytopal meshes often used for inhomogeneous media, as the discontinuity of electromagnetic parameters can lead to quite low regularity of solutions near media interfaces. This very issue can be potentially worsened by geometric singularities, making those methods particularly challenging to apply. In this paper, we present a lowest-order virtual element method for solving an indefinite time-harmonic Maxwell equation in 2D inhomogeneous media with quite arbitrary polytopal meshes, and the media interface is allowed to have geometric singularity to cause low regularity. We employ the “virtual mesh” technique originally invented in [S. Cao, L. Chen and R. Guo, A virtual finite element method for two-dimensional Maxwell interface problems with a background unfitted mesh, Math. Models Methods Appl. Sci. 31 (2021) 2907–2936] for error analysis. This work admits three key novelties: (i) the proposed method is theoretically guaranteed to achieve robust optimal convergence for solutions with merely [Formula: see text] regularity, [Formula: see text]; (ii) the polytopal element shape can be highly anisotropic and shrinking, and an explicit formula is established to describe the relationship between the shape regularity and solution regularity; (iii) we show that the stabilization term is needed to produce optimal convergent solutions for indefinite problems. Extensive numerical experiments will be given to demonstrate the effectiveness of the proposed method.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    