skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Direct Fabrication of Atomically Defined Pores in MXenes Using Feedback‐Driven STEM
Abstract Controlled fabrication of nanopores in 2D materials offer the means to create robust membranes needed for ion transport and nanofiltration. Techniques for creating nanopores have relied upon either plasma etching or direct irradiation; however, aberration‐corrected scanning transmission electron microscopy (STEM) offers the advantage of combining a sub‐Å sized electron beam for atomic manipulation along with atomic resolution imaging. Here, a method for automated nanopore fabrication is utilized with real‐time atomic visualization to enhance the mechanistic understanding of beam‐induced transformations. Additionally, an electron beam simulation technique, Electron‐Beam Simulator (E‐BeamSim) is developed to observe the atomic movements and interactions resulting from electron beam irradiation. Using the MXene Ti3C2Tx, the influence of temperature on nanopore fabrication is explored by tracking atomic transformations and find that at room temperature the electron beam irradiation induces random displacement and results in titanium pileups at the nanopore edge, which is confirmed by E‐BeamSim. At elevated temperatures, after removal of the surface functional groups and with the increased mobility of atoms results in atomic transformations that lead to the selective removal of atoms layer by layer. This work can lead to the development of defect engineering techniques within functionalized MXene layers and other 2D materials.  more » « less
Award ID(s):
2039351 1539916
PAR ID:
10584849
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley-VCH GmbH
Date Published:
Journal Name:
Small Methods
Volume:
8
Issue:
12
ISSN:
2366-9608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract State-of-the-art nanopore sequencing enables rapid and real-time identification of novel pathogens, which has wide application in various research areas and is an emerging diagnostic tool for infectious diseases including COVID-19. Nanopore translocation enables de novo sequencing with long reads (> 10 kb) of novel genomes, which has advantages over existing short-read sequencing technologies. Biological nanopore sequencing has already achieved success as a technology platform but it is sensitive to empirical factors such as pH and temperature. Alternatively, ångström- and nano-scale solid-state nanopores, especially those based on two-dimensional (2D) membranes, are promising next-generation technologies as they can surpass biological nanopores in the variety of membrane materials, ease of defining pore morphology, higher nucleotide detection sensitivity, and facilitation of novel and hybrid sequencing modalities. Since the discovery of graphene, atomically-thin 2D materials have shown immense potential for the fabrication of nanopores with well-defined geometry, rendering them viable candidates for nanopore sequencing membranes. Here, we review recent progress and future development trends of 2D materials and their ångström- and nano-scale pore-based nucleic acid (NA) sequencing including fabrication techniques and current and emerging sequencing modalities. In addition, we discuss the current challenges of translocation-based nanopore sequencing and provide an outlook on promising future research directions. 
    more » « less
  2. Rich electron-matter interactions fundamentally enable electron probe studies of materials such as scanning transmission electron microscopy (STEM). Inelastic interactions often result in structural modifications of the material, ultimately limiting the quality of electron probe measurements. However, atomistic mechanisms of inelastic-scattering-driven transformations are difficult to characterize. Here, we report direct visualization of radiolysis-driven restructuring of rutile TiO2under electron beam irradiation. Using annular dark field imaging and electron energy-loss spectroscopy signals, STEM probes revealed the progressive filling of atomically sharp nanometer-wide cracks with striking atomic resolution detail. STEM probes of varying beam energy and precisely controlled electron dose were found to constructively restructure rutile TiO2according to a quantified radiolytic mechanism. Based on direct experimental observation, a “two-step rolling” model of mobile octahedral building blocks enabling radiolysis-driven atomic migration is introduced. Such controlled electron beam-induced radiolytic restructuring can be used to engineer novel nanostructures atom-by-atom. 
    more » « less
  3. Abstract Ti3C2Tx(MXenes) are novel 2D nanomaterials with exceptional electrical conductivity. Their surfaces are covered with functional groups that may significantly affect material properties such as hydrophobicity, electrical conductivity, and oxidation resistance. The role of these terminations in high-temperature ceramic systems with regard to phase and microstructural evolution has not been investigated. In this study, Ti3C2Tx-SiOC 2D nanocomposites were fabricated with -F and -OH terminated MXene to evaluate the role of surface terminations in silane coupling and phase formation during the polymer-to-ceramic transformation. X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS) identified self-etching mechanisms caused by F-terminated Ti3C2Txand revealed that the F surface terminations were retained in the MXene structure until evolution at ~ 550 °C. Evolved F reacted with Si–H bonds in the transforming ceramic matrix, causing additional mass loss and volumetric deformation. LiOH alkalization was shown to suppress the self-etching phenomenon through the substitution of F groups with OH on the nanosheet surface. Furthermore, F terminations were determined to only engage in hydrogen bonding with silane molecules as opposed to covalent linkages with OH terminations, which accelerated silane removal and Ti3C2Txdegradation. The study provides a fundamental understanding of the nature and behavior of MXene surface terminations in the context of high-temperature ceramic nanocomposite fabrication. 
    more » « less
  4. Abstract MXenes, a family of 2D transition‐metal carbides and nitrides, have excellent electrical conductivity and unique optical properties. However, MXenes oxidize in ambient conditions, which is accelerated upon heating. Intercalation of water also causes hydrolysis accelerating oxidation. Developing new tools to readily characterize MXenes’ thermal stability can enable deeper insights into their structure–property relationships. Here, in situ spectroscopic ellipsometry (SE) is employed to characterize the optical properties of three types of MXenes (Ti3C2Tx, Mo2TiC2Tx, and Ti2CTx) with varied composition and atomistic structures to investigate their thermal degradation upon heating under ambient environment. It is demonstrated that changes in MXene extinction and optical conductivity in the visible and near‐IR regions correlate well with the amount of intercalated water and hydroxyl termination groups and the degree of oxidation, measured using thermogravimetric analysis. Among the three MXenes, Ti3C2Txand Ti2CTx, respectively, have the highest and lowest thermal stability, indicating the role of transition‐metal type, synthesis route, and the number of atomic layers in MXene flakes. These findings demonstrate the utility of SE as a powerful in situ technique for rapid structure–property relationship studies paving the way for the further design, fabrication, and property optimization of novel MXene materials. 
    more » « less
  5. Abstract MXenes are among the fastest‐growing families of 2D materials, promising for high‐rate, high‐energy energy storage applications due to their high electronic and ionic conductivity, large surface area, and reversible surface redox ability. The Ti3C2TxMXene shows a capacitive charge storage mechanism in diluted aqueous LiCl electrolyte while achieving abnormal redox‐like features in the water‐in‐salt LiCl electrolyte. Herein, variousoperandotechniques are used to investigate changes in resistance, mass, and electrode thickness of Ti3C2Txduring cycling in salt‐in‐water and water‐in‐salt LiCl electrolytes. Significant resistance variations due to interlayer space changes are recorded in the water‐in‐salt LiCl electrolyte. In both electrolytes, conductivity variations attributed to charge carrier density changes or varied inter‐sheet electron hopping barriers are detected in the capacitive areas, where no thickness variations are observed. Overall, combining thoseoperandotechniques enhances the understanding of charge storage mechanisms and facilitates the development of MXene‐based energy storage devices. 
    more » « less