In this paper, we propose and study opportunistic bandits - a new variant of bandits where the regret of pulling a suboptimal arm varies under different environmental conditions, such as network load or produce price. When the load/price is low, so is the cost/regret of pulling a suboptimal arm (e.g., trying a suboptimal network configuration). Therefore, intuitively, we could explore more when the load/price is low and exploit more when the load/price is high. Inspired by this intuition, we propose an Adaptive Upper-Confidence-Bound (AdaUCB) algorithm to adaptively balance the exploration-exploitation tradeoff for opportunistic bandits. We prove that AdaUCB achieves O(log T) regret with a smaller coefficient than the traditional UCB algorithm. Furthermore, AdaUCB achieves O(1) regret with respect to T if the exploration cost is zero when the load level is below a certain threshold. Last, based on both synthetic data and real-world traces, experimental results show that AdaUCB significantly outperforms other bandit algorithms, such as UCB and TS (Thompson Sampling), under large load/price fluctuation.
more »
« less
TS-UCB: Improving on Thompson Sampling With Little to No Additional Computation
Thompson sampling has become a ubiquitous ap- proach to online decision problems with bandit feedback. The key algorithmic task for Thomp- son sampling is drawing a sample from the pos- terior of the optimal action. We propose an al- ternative arm selection rule we dub TS-UCB, that requires negligible additional computational effort but provides significant performance im- provements relative to Thompson sampling. At each step, TS-UCB computes a score for each arm using two ingredients: posterior sample(s) and upper confidence bounds. TS-UCB can be used in any setting where these two quantities are available, and it is flexible in the number of posterior samples it takes as input. TS-UCB achieves materially lower regret on a comprehen- sive suite of synthetic and real-world datasets, including a personalized article recommendation dataset from Yahoo! and a suite of benchmark datasets from a deep bandit suite proposed in Riquelme et al. (2018). Finally, from a theoreti- cal perspective, we establish optimal regret guar- antees for TS-UCB for both the K-armed and linear bandit models.
more »
« less
- Award ID(s):
- 1727239
- PAR ID:
- 10584907
- Publisher / Repository:
- PMLR
- Date Published:
- ISSN:
- 2640-3498
- Format(s):
- Medium: X
- Location:
- International Conference on Artificial Intelligence and Statistics. PMLR, 2023
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the problem of online multi-task learning where the tasks are performed within similar but not necessarily identical multi-armed bandit environments. In particular, we study how a learner can improve its overall performance across multiple related tasks through robust transfer of knowledge. While an upper confidence bound (UCB)-based algorithm has recently been shown to achieve nearly-optimal performance guarantees in a setting where all tasks are solved concurrently, it remains unclear whether Thompson sampling (TS) algorithms, which have superior empirical performance in general, share similar theoretical properties. In this work, we present a TS-type algorithm for a more general online multi-task learning protocol, which extends the concurrent setting. We provide its frequentist analysis and prove that it is also nearly-optimal using a novel concentration inequality for multi-task data aggregation at random stopping times. Finally, we evaluate the algorithm on synthetic data and show that the TS-type algorithm enjoys superior empirical performance in comparison with the UCB-based algorithm and a baseline algorithm that performs TS for each individual task without transfer.more » « less
-
Daumé III, Hal; Singh, Aarti (Ed.)Thompson sampling for multi-armed bandit problems is known to enjoy favorable performance in both theory and practice. However, its wider deployment is restricted due to a significant computational limitation: the need for samples from posterior distributions at every iteration. In practice, this limitation is alleviated by making use of approximate sampling methods, yet provably incorporating approximate samples into Thompson Sampling algorithms remains an open problem. In this work we address this by proposing two efficient Langevin MCMC algorithms tailored to Thompson sampling. The resulting approximate Thompson Sampling algorithms are efficiently implementable and provably achieve optimal instance-dependent regret for the Multi-Armed Bandit (MAB) problem. To prove these results we derive novel posterior concentration bounds and MCMC convergence rates for log-concave distributions which may be of independent interest.more » « less
-
null (Ed.)Federated multi-armed bandits (FMAB) is a new bandit paradigm that parallels the federated learning (FL) framework in supervised learning. It is inspired by practical applications in cognitive radio and recommender systems, and enjoys features that are analogous to FL. This paper proposes a general framework of FMAB and then studies two specific federated bandit models. We first study the approximate model where the heterogeneous local models are random realizations of the global model from an unknown distribution. This model introduces a new uncertainty of client sampling, as the global model may not be reliably learned even if the finite local models are perfectly known. Furthermore, this uncertainty cannot be quantified a priori without knowledge of the suboptimality gap. We solve the approximate model by proposing Federated Double UCB (Fed2-UCB), which constructs a novel “double UCB” principle accounting for uncertainties from both arm and client sampling. We show that gradually admitting new clients is critical in achieving an O(log(T)) regret while explicitly considering the communication loss. The exact model, where the global bandit model is the exact average of heterogeneous local models, is then studied as a special case. We show that, somewhat surprisingly, the order-optimal regret can be achieved independent of the number of clients with a careful choice of the update periodicity. Experiments using both synthetic and real-world datasets corroborate the theoretical analysis and demonstrate the effectiveness and efficiency of the proposed algorithms.more » « less
-
We study the multi-agent multi-armed bandit (MAMAB) problem, where agents are factored into overlapping groups. Each group represents a hyperedge, forming a hypergraph over the agents. At each round of interaction, the learner pulls a joint arm (composed of individual arms for each agent) and receives a reward according to the hypergraph structure. Specifically, we assume there is a local reward for each hyperedge, and the reward of the joint arm is the sum of these local rewards. Previous work introduced the multi-agent Thompson sampling (MATS) algorithm and derived a Bayesian regret bound. However, it remains an open problem how to derive a frequentist regret bound for Thompson sampling in this multi-agent setting. To address these issues, we propose an efficient variant of MATS, the epsilon-exploring Multi-Agent Thompson Sampling (eps-MATS) algorithm, which performs MATS exploration with probability epsilon while adopts a greedy policy otherwise. We prove that eps-MATS achieves a worst-case frequentist regret bound that is sublinear in both the time horizon and the local arm size. We also derive a lower bound for this setting, which implies our frequentist regret upper bound is optimal up to constant and logarithm terms, when the hypergraph is sufficiently sparse. Thorough experiments on standard MAMAB problems demonstrate the superior performance and the improved computational efficiency of eps-MATS compared with existing algorithms in the same setting.more » « less