Abstract The Baldwin, Philips, & Terlevich diagram of [Oiii]/Hβversus [Nii]/Hα(hereafter N2-BPT) has long been used as a tool for classifying galaxies based on the dominant source of ionizing radiation. Recent observations have demonstrated that galaxies atz∼ 2 reside offset from local galaxies in the N2-BPT space. In this paper, we conduct a series of controlled numerical experiments to understand the potential physical processes driving this offset. We model nebular line emission in a large sample of galaxies, taken from thesimbacosmological hydrodynamic galaxy formation simulation, using thecloudyphotoionization code to compute the nebular line luminosities from Hiiregions. We find that the observed shift toward higher [Oiii]/Hβand [Nii]/Hαvalues at high redshift arises from sample selection: when we consider only the most massive galaxiesM*∼ 1010–11M⊙, the offset naturally appears, due to their high metallicities. We predict that deeper observations that probe lower-mass galaxies will reveal galaxies that lie on a locus comparable toz∼ 0 observations. Even when accounting for samples-selection effects, we find that there is a subtle mismatch between simulations and observations. To resolve this discrepancy, we investigate the impact of varying ionization parameters, Hiiregion densities, gas-phase abundance patterns, and increasing radiation field hardness on N2-BPT diagrams. We find that either decreasing the ionization parameter or increasing the N/O ratio of galaxies at fixed O/H can move galaxies along a self-similar arc in N2-BPT space that is occupied by high-redshift galaxies.
more »
« less
This content will become publicly available on February 28, 2026
Supernova Siblings and Spectroscopic Host Galaxy Properties
Over the past century, supernova (SN) searches have detected multiple supernovae (SNe) in hundreds of individual galaxies. So-called SN siblings discovered in the same galaxy present an opportunity to constrain the dependence of the properties of SNe on those of their host galaxies. To investigate whether there is a connection between sibling SNe in galaxies that have hosted multiple SNe and the properties of galaxies, we have acquired integrated optical spectroscopy of 59 galaxies with multiple core-collapse SNe. Perhaps surprisingly, a strong majority of host galaxy spectra fall within the composite region of the Baldwin–Phillips–Terlevich (BPT) diagram. We find a statistically significant difference (Kolmogorov–Smirnov test p-value = 0.044) between the distributions of the [Nii]λ6583/Hα of galaxies that have hosted a majority of SNe Ibc and those that have hosted a majority of Type II supernovae (SNe II), where the majority of Type Ibc supernovae (SNe Ibc) galaxies have, on average, higher ratios. The difference between the distributions of [Nii]λ6583/Hα may arise from either increased contribution from active galactic nuclei or low-ionization nuclear emission-line regions in SNe Ibc host galaxies, greater metallicity for SNe Ibc host galaxies, or both. When comparing the inferred oxygen abundance and the ionization parameter for the galaxies in the star-forming region on the BPT diagram, we find statistically significant differences between the distributions for SNe Ibc hosts and SNe II hosts (p= 0.008 and p= 0.001, respectively), as well as SNe Ib hosts and SNe II hosts (p = 0.030 and p= 0.006, respectively). We also compare the Hα equivalent width distributions, also integrated across the galaxies, and find no significant difference.
more »
« less
- PAR ID:
- 10584970
- Publisher / Repository:
- Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 981
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 97
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We analyze a sample of 25 [Nev] (λ3426) emission-line galaxies at 1.4 <z< 2.3 using Hubble Space Telescope/Wide Field Camera 3 G102 and G141 grism observations from the CANDELS LyαEmission at Reionization (CLEAR) survey. [Nev] emission probes extremely energetic photoionization (creation potential of 97.11 eV) and is often attributed to energetic radiation from active galactic nuclei (AGNs), shocks from supernovae, or an otherwise very hard ionizing spectrum from the stellar continuum. In this work, we use [Nev] in conjunction with other rest-frame UV/optical emission lines ([Oii]λλ3726, 3729, [Neiii]λ3869, Hβ, [Oiii]λλ4959, 5007, Hα+[Nii]λλ6548, 6583, [Sii]λλ6716, 6731), deep (2–7 Ms) X-ray observations (from Chandra), and mid-infrared imaging (from Spitzer) to study the origin of this emission and to place constraints on the nature of the ionizing engine. The majority of the [Nev]-detected galaxies have properties consistent with ionization from AGNs. However, for our [Nev]-selected sample, the X-ray luminosities are consistent with local (z≲ 0.1) X-ray-selected Seyferts, but the [Nev] luminosities are more consistent with those fromz∼ 1 X-ray-selected QSOs. The excess [Nev] emission requires either reduced hard X-rays or a ∼0.1 keV excess. We discuss possible origins of the apparent [Nev] excess, which could be related to the “soft (X-ray) excess” observed in some QSOs and Seyferts and/or be a consequence of a complex/anisotropic geometry for the narrow-line region, combined with absorption from a warm, relativistic wind ejected from the accretion disk. We also consider implications for future studies of extreme high-ionization systems in the epoch of reionization (z≳ 6) with the James Webb Space Telescope.more » « less
-
Abstract We present observations of three core-collapse supernovae (CCSNe) in elliptical hosts, detected by the Zwicky Transient Facility Bright Transient Survey (BTS). SN 2019ape is a SN Ic that exploded in the main body of a typical elliptical galaxy. Its properties are consistent with an explosion of a regular SN Ic progenitor. A secondary g -band light-curve peak could indicate interaction of the ejecta with circumstellar material (CSM). An H α -emitting source at the explosion site suggests a residual local star formation origin. SN 2018fsh and SN 2020uik are SNe II which exploded in the outskirts of elliptical galaxies. SN 2020uik shows typical spectra for SNe II, while SN 2018fsh shows a boxy nebular H α profile, a signature of CSM interaction. We combine these 3 SNe with 7 events from the literature and analyze their hosts as a sample. We present multi-wavelength photometry of the hosts, and compare this to archival photometry of all BTS hosts. Using the spectroscopically complete BTS, we conclude that 0.3 % − 0.1 + 0.3 of all CCSNe occur in elliptical galaxies. We derive star formation rates and stellar masses for the host galaxies and compare them to the properties of other SN hosts. We show that CCSNe in ellipticals have larger physical separations from their hosts compared to SNe Ia in elliptical galaxies, and discuss implications for star-forming activity in elliptical galaxies.more » « less
-
Context. This is the first paper in a series aiming to determine the fractions and birth rates of various types of supernovae (SNe) in the local Universe. Aims. In this paper, we aim to construct a complete sample of SNe in the nearby Universe and provide more precise measurements of subtype fractions. Methods. We carefully selected our SN sample at a distance of less than 40 Mpc mainly from wide-field surveys conducted over the years from 2016 to 2023. Results. The sample contains a total of 211 SNe, including 109 SNe II, 69 SNe Ia, and 33 SNe Ibc. With the aid of sufficient spectra, we obtained relatively accurate subtype classifications for all SNe in this sample. After corrections for the Malmquist bias, this volumelimited sample yielded fractions of SNe Ia, SNe Ibc, and SNe II of 30.4−11.5+3.7%, 16.3−7.4+3.7%, and 53.3−18.7+9.5%, respectively. In the SN Ia sample, the fraction of the 91T-like subtype becomes relatively low (~5.4%), while that of the 02cx-like subtype shows a moderate increase (~6.8%). In the SN Ibc sample, we find significant fractions of broadlined SNe Ic (~18.0%) and SNe Ibn (~8.8%). The fraction of the 87A-like subtype was determined to be ~2.3%, indicating rare explosions from blue supergiant stars. We find that SNe Ia show a double peak number distribution in S0- and Sc-type host galaxies, which may serve as straightforward evidence for the presence of “prompt” and “delayed” progenitor components that give rise to SN Ia explosions. Several subtypes of SNe such as 02cx-like SNe Ia, broadlined SNe Ic, and SNe IIn (and perhaps SNe Ibn) are found to occur preferentially in less massive spiral galaxies (i.e., with stellar mass <0.5×1010Mʘ), thus favoring their associations with young stellar progenitors. Moreover, the 02cx-like subtype shows a trend of exploding in the outer skirt of their hosts, which is suggestive of metal-poor progenitors.more » « less
-
We use JWST Near-Infrared Spectrograph observations from the Cosmic Evolution Early Release survey, GLASS-JWST ERS (GLASS), and JWST Advanced Deep Extragalactic Survey to measure rest-frame optical emission-line ratios of 89 galaxies atz > 4. The stacked spectra of galaxies with and without a broad-line feature reveal a difference in the [Oiii]λ4364 and Hγratios. This motivated our investigation of the [Oiii]λ4364/Hγversus [Neiii]/[Oii] diagram. We define two active galactic nucleus (AGN)/star formation (SF) classification lines based on 21,048 Sloan Digital Sky Survey galaxies atz ∼ 0. After applying a redshift correction to the AGN/SF lines, we find 69.2% of broad-line active galactic nuclei (BLAGN) continue to land in the AGN region of the diagnostic, largely due to the [Neiii]/[Oii] ratio. However, 33.0% of non-BLAGN land is in the AGN region as well. The [Oiii]λ4364/Hγversus [Neiii]/[Oii] diagram does not robustly separate BLAGN from non-broad-line galaxies atz> 4. This could be due to star-forming galaxies having harder ionization, or these galaxies contain a narrow line AGN, which are not accounted for. We further inspected galaxies without broad emission lines in each region of [Oiii]λ4364/Hγversus [Neiii]/[Oii] diagram and found that they have slightly stronger Ciii]λ1908 fluxes and equivalent width when landing in the BLAGN region. However, the cause of this higher ionization is unclear and may be revealed by observing UV lines.more » « less
An official website of the United States government
