The genus Rugosporella is proposed to accommodate Peziza atrovinosa in the modern classification scheme of the Pezizaceae. We used DNA sequences of ITS, LSU and RPB2 to resolve the phylogenetic placement of this taxon. The species occupies a distinct position within a large and diverse clade of hypogeous and epigeous taxa, all of which are either known to be or presumed to be ectomycorrhizal. Although no DNA sequences of this species have been identified from ectomycorrhizal roots, we provide isotopic data supporting its ectomycorrhizal lifestyle. Peziza atrovinosa is distinctive in its moderately large vinaceous brown apothecia with thick flesh and the relatively small ascospores that are ornamented with a high reticulum and that become yellow-brown at maturity. This species is found across eastern North America.
more »
« less
Effective Field Collection of Pezizales Ascospores for Procuring Diverse Fungal Isolates
Pezizales are a diverse and economically important order of fungi. They are common in the environment, having epigeous form, such as morels and hypogeous, forms called truffles. The mature ascospores of most epigeous Pezizales are forcibly discharged through an opening at the ascus apex created with the lifting of the operculum, a lid-like structure specific to Pezizales. The axenic cultures of Pezizales fungi isolated from single ascospores are important for understanding the life cycle, development, ecology, and evolution of these fungi. However, obtaining single-spore isolates can be challenging, particularly for collections obtained in locations where sterile work environments are not available. In this paper, we introduce an accessible method for harvesting ascospores from fresh ascomata in the field and laboratory for obtaining single-spore isolates. Ascospores are harvested on the inside cover of Petri plate lids in the field, air dried, and stored. At a later date, single-spore isolates are axenically cultured through serial dilution and plating on antibiotic media. With this approach, we were able to harvest ascospores and obtain single-spore isolates from 12 saprotrophic and 2 ectomycorrhizal species belonging to six Pezizales families: Discinaceae, Morchellaceae, Pezizaceae, Pyronemataceae, Sarcosomataceae, and Sarcoscyphaceae. This method worked well for saprotrophic taxa (12 out of 19 species, 63%) and was even effective for a few ectomycorrhizal taxa (2 out of 13 species, 15%). This process was used to study the initial stages of spore germination and colony development in species across several Pezizales families. We found germination often commenced with the swelling of the spore, followed by the emergence of 1–8 germ tubes. This method is sufficiently straightforward that, provided with sterile Petri dishes, citizen scientists from distant locations could use this approach to capture spores and subsequently mail them with voucher specimens to a research laboratory for further study. The generated single-spore Pezizales isolates obtained through this method were used to generate high-quality genomic data. Isolates generated in this fashion can be used in manipulative experiments to better understand the biology, evolution, and ecogenomics of Pezizales.
more »
« less
- Award ID(s):
- 1946445
- PAR ID:
- 10585098
- Publisher / Repository:
- Diversity
- Date Published:
- Journal Name:
- Diversity
- Volume:
- 16
- Issue:
- 3
- ISSN:
- 2291-0557
- Page Range / eLocation ID:
- 165
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The functioning of mycorrhizal symbioses is tied to soil nutrient status, suggesting that nutrient availability should influence the reproduction of mycorrhizal fungi. To quantify the effects of nitrogen (N) and phosphorus (P) availability on ectomycorrhizal fungal fruiting, we collected >4000 epigeous sporocarps representing 19 families during the course of a season in a full factorial NxP addition experiment in six replicate forest stands. Nutrient effects on fruiting shifted as the season progressed, with early fruiting species responding more to P and late-fruiting species responding more to N. The composition of species fruiting in young successional forests differed more with nutrient addition than in mature forests. Sporocarp abundance and species richness were suppressed by N addition. This work shows that N and P availability affect ectomycorrhizal fungal fruiting, with these effects taking place within a context defined by stand age and the progression of fruiting across the season.more » « less
-
ABSTRACT Specific interactions between bacteria and ectomycorrhizal fungi (EcMF) can benefit plant health, and saprotrophic soil fungi represent a potentially antagonistic guild to these mutualisms. Yet there is little field‐derived experimental evidence showing how the relationship among these three organismal groups manifests across time. To bridge this knowledge gap, we experimentally reduced EcMF in forest soils and monitored both bacterial and fungal soil communities over the course of a year. Our analyses demonstrate that soil trenching shifts the community composition of fungal communities towards a greater abundance of taxa with saprotrophic traits, and this shift is linked to a decrease in both EcMF and a common ectomycorrhizal helper bacterial genus,Burkholderia, in a time‐dependent manner. These results not only reveal the temporal nature of a widespread tripartite symbiosis between bacteria, EcMF and a shared host tree, but they also refine our understanding of the commonly referenced ‘Gadgil effect’ by illustrating the cascading effects of EcMF suppression and implicating soil saprotrophic fungi as potential antagonists on bacterial‐EcMF interactions.more » « less
-
Abstract Mast seeding is a well‐documented phenomenon across diverse forest ecosystems. While its effect on aboveground food webs has been thoroughly studied, how it impacts the soil fungi that drive soil carbon and nutrient cycling has not yet been explored. To evaluate the relationship between mast seeding and fungal resource availability, we paired a Swiss 29‐year fungal sporocarp census with contemporaneous seed production for European beech (Fagus sylvaticaL.). On average, mast seeding was associated with a 55% reduction in sporocarp production and a compositional community shift towards drought‐tolerant taxa across both ectomycorrhizal and saprotrophic guilds. Among ectomycorrhizal fungi, traits associated with carbon cost did not explain species' sensitivity to seed production. Together, our results support a novel hypothesis that mast seeding limits annual resource availability and reproductive investment in soil fungi, creating an ecosystem ‘rhythm’ to forest processes that is synchronized above‐ and belowground.more » « less
-
ABSTRACT Ectomycorrhizal and saprotrophic fungi respond differently to changing edaphic conditions caused by atmospheric deposition. Within each guild, responses can vary significantly, reflecting the diversity of species and their specific adaptations to environmental changes. Metal contaminants are often deposited onto earth's surface through atmospheric deposition, yet few studies have assessed the relationship between soil metal contamination and fungal communities. The goal of this study was to understand how soil metal contamination and other edaphic factors vary across the spruce‐fir ecosystem in the Southern Appalachians and influence fungal diversity and function. Here, we characterize soil fungal communities using high‐throughput sequencing of the ITS2 gene region and found that higher soil lead (Pb) concentrations were associated with lower fungal diversity. Ectomycorrhizal fungi were less diverse (specifically hydrophilic ectomycorrhizal functional types) at plots with elevated soil Pb concentrations, while saprotrophic fungi were less diverse at plots with elevated soil carbon:nitrogen ratios. Fungal community composition was significantly influenced by pH, Pb, and spatial factors. This study identifies important relationships between fungal diversity and soil Pb concentrations and indicates variable responses of genera within well‐defined ecological guilds. Our work highlights the need to characterize poorly understood taxonomic groups of fungi and their function prior to further environmental degradation.more » « less
An official website of the United States government

