skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How Hot Is Too Hot? Disentangling Mid‐Cretaceous Hothouse Paleoclimate From Diagenesis
Abstract The North American Newark Canyon Formation (NCF; ∼113–98 Ma) presents an opportunity to examine how terrestrial carbonate facies reflect different aspects of paleoclimate during one of the hottest periods of Earth's history. The lower NCF type section preserves heterogeneous palustrine facies and the upper NCF preserves lacustrine deposits. We combined carbonate facies analysis withδ13C,δ18O, and Δ47data sets to assess which carbonate facies preserve stable isotope signals that are most representative of climatic conditions. Palustrine facies record the heterogeneity of the original wetland environment in which they formed. Using the pelmicrite facies that formed in deeper wetlands, we interpret a lower temperature zone (35–40°C) to reflect warm season water temperatures. In contrast, a mottled micrite facies which formed in shallower wetlands records hotter temperatures (36–68°C). These hotter temperatures reflect radiatively heated “bare‐skin” temperatures that occurred in a shallow depositional setting. The lower lacustrine unit has been secondarily altered by hydrothermal fluids while the upper lacustrine unit likely preserves primary temperatures andδ18Owaterof catchment‐integrated precipitation. Resultantly, the palustrine pelmicrite and lacustrine micrite are the facies most likely to reflect ambient climate conditions, and therefore, are the best facies to use for paleoclimate interpretations. Average warm season water temperatures of 41.1 ± 3.6°C and 37.8 ± 2.5°C are preserved by the palustrine pelmicrite (∼113–112 Ma) and lacustrine micrite (∼112–103 Ma), respectively. These data support previous interpretations of the mid‐Cretaceous as a hothouse climate and demonstrate the importance of characterizing facies for identifying the data most representative of past climates.  more » « less
Award ID(s):
1524785
PAR ID:
10585188
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
37
Issue:
12
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Lacustrine carbonates are a powerful archive of paleoenvironmental information but are susceptible to post‐depositional alteration. Microbial metabolisms can drive such alteration by changing carbonate saturationin situ, thereby driving dissolution or precipitation. The net impact these microbial processes have on the primary δ18O, δ13C, and Δ47values of lacustrine carbonate is not fully known. We studied the evolution of microbial community structure and the porewater and sediment geochemistry in the upper ~30 cm of sediment from two shoreline sites at Green Lake, Fayetteville, NY over 2 years of seasonal sampling. We linked seasonal and depth‐based changes of porewater carbonate chemistry to microbial community composition, in situ carbon cycling (using δ13C values of carbonate, dissolved inorganic carbon (DIC), and organic matter), and dominant allochems and facies. We interpret that microbial processes are a dominant control on carbon cycling within the sediment, affecting porewater DIC, aqueous carbon chemistry, and carbonate carbon and clumped isotope geochemistry. Across all seasons and sites, microbial organic matter remineralization lowers the δ13C of the porewater DIC. Elevated carbonate saturation states in the sediment porewaters (Ω > 3) were attributed to microbes from groups capable of sulfate reduction, which were abundant in the sediment below 5 cm depth. The nearshore carbonate sediments at Green Lake are mainly composed of microbialite intraclasts/oncoids, charophytes, larger calcite crystals, and authigenic micrite—each with a different origin. Authigenic micrite is interpreted to have precipitated in situ from the supersaturated porewaters from microbial metabolism. The stable carbon isotope values (δ13Ccarb) and clumped isotope values (Δ47) of bulk carbonate sediments from the same depth horizons and site varied depending on both the sampling season and the specific location within a site, indicating localized (μm to mm) controls on carbon and clumped isotope values. Our results suggest that biological processes are a dominant control on carbon chemistry within the sedimentary subsurface of the shorelines of Green Lake, from actively forming microbialites to pore space organic matter remineralization and micrite authigenesis. A combination of biological activity, hydrologic balance, and allochem composition of the sediments set the stable carbon, oxygen, and clumped isotope signals preserved by the Green Lake carbonate sediments. 
    more » « less
  2. Abstract Ancient greenhouse periods are useful analogs for predicting effects of anthropogenic climate change on regional and global temperature and precipitation patterns. A paucity of terrestrial data from polar regions during warm episodes challenges our understanding of polar climate responses to natural/anthropogenic change and therefore our ability to predict future changes in precipitation. Ellesmere and Axel Heiberg Islands in the Canadian Arctic preserve terrestrial deposits spanning the late Paleocene to middle Eocene (59–45 Ma). Here we expand on existing regional sedimentology and paleontology through the addition of stable (δ13C, δ18O) and clumped (Δ47) isotope analyses on palustrine carbonates. δ13C isotope values range from −4.6 to +12.3‰ (VPDB), and δ18O isotope values range from −23.1 to −15.2‰ (VPDB). Both carbon and oxygen isotope averages decrease with increasing diagenetic alteration. Unusually enriched carbon isotope (δ13C) values suggest that analyzed carbonates experienced repeated dissolution‐precipitation enrichment cycles, potentially caused by seasonal fluctuations in water availability resulting in summer carbonate dissolution followed by winter carbonate re‐precipitation. Stable isotopes suggest some degree of precipitation seasonality or reduction in winter water availability in the Canadian Arctic during the Paleogene. Clumped (Δ47) temperature estimates range from 52 to 121°C and indicate low temperature solid‐state reordering of micritic samples and diagenetic recrystallization in sparry samples. Average temperatures agree with vitrinite reflectance data for Eureka Sound Group and underlying sediments, highlighting structural complexity across the region. Broadly, combined stable and clumped isotope data from carbonates in complex systems are effective for describing both paleoclimatic and post‐burial conditions. 
    more » « less
  3. Abstract High topography is the manifestation of the balance between deep and surficial erosional processes. Hence, reconstructions of paleotopography are critical for disentangling records of orogenesis and climate. Here we used a new approach by combining detrital zircon U‐Pb geochronology and tetraether‐based paleothermometry to characterize the Neogene paleotopography of Northern Tibetan Plateau. Detrital zircon U‐Pb data reveal that the Qilian Shan has been uplifted, providing sediments to bounding basins since circa 15.8 Ma. The paleothermometry studies show warm temperatures for paleosols (<12.4–9.5 Ma and 3.7–2.0 Ma) and low temperatures for lacustrine facies (12.4 Ma and 9.5–3.7 Ma). We interpret the different temperatures to reflect the in situ production of tetraethers under warm temperatures within the basin (paleosols) versus terrestrial inputs from high and cold drainage to the paleolake (lacustrine facies). The study supports a topography with significant relief in the Northern Tibetan Plateau since 12.4 Ma. 
    more » « less
  4. Abstract The extinction of theParanthropus boiseiestimated to just before 1 Ma occurred when C4grasslands dominated landscapes of the Eastern African Rift System (EARS).P. boiseihas been characterized as an herbivorous C4specialist, and paradoxically, its demise coincided with habitats favorable to its dietary ecology. Here we report new pedogenic carbonate stable carbon (δ13CPC) and oxygen (δ18OPC) values (nodules = 53, analyses = 95) from an under-sampled interval (1.4–0.7 Ma) in the Turkana Basin (Kenya), one of the most fossiliferous locales ofP. boisei. We combined our new results with published δ13CPCvalues from the EARS dated to 3–0 Ma, conducted time-series analysis of woody cover (ƒWC), and compared the EARS ƒWCtrends to regional and global paleo-environmental and -climatic datasets. Our results demonstrate that the long-term rise of C4grasslands was punctuated by a transient but significant increase in C3vegetation and warmer temperatures, coincident with the Mid-Pleistocene Transition (1.3–0.7 Ma) and implicating a short-term rise inpCO2. The contraction of C4grasslands escalated dietary competition amongst the abundant C4-feeders, likely influencingP. boisei’s demise. 
    more » « less
  5. Abstract Ancient lake deposits in the Mojave Desert indicate that the water cycle in this currently dry place was radically different under past climates. Here we revisit a 700 m core drilled 55 years ago from Searles Valley, California, that recovered evidence for a lacustrine phase during the late Pliocene. We update the paleomagnetic age model and extract new biomarker evidence for climatic conditions from lacustrine deposits (3.373–2.706 Ma). The MBT′5Metemperature proxy detects present‐day conditions (21 ± 3°C,n = 2) initially, followed by warmer‐than‐present conditions (25 ± 3°C,n = 17) starting at 3.268 and ending at 2.734 Ma. Bacterial and archeal biomarkers reveal lake salinity increased after 3.268 Ma likely reflecting increased evaporation in response to higher temperatures. The δ13C values of plant waxes (−30.7 ± 1.4‰,n = 28) are consistent with local C3taxa, likely expanded conifer woodlands during the pluvial with less C4than the Pleistocene. δD values (−174 ± 5‰,n = 25) of plant waxes indicate precipitation δD values (−89 ± 5‰,n = 25) in the late Pliocene are within the same range as the late Pleistocene precipitation δD. Microbial biomarkers identify a deep, freshwater lake and a cooling that corresponds to the onset of major Northern Hemisphere glaciation at marine isotope stage marine isotope stages M2 (3.3 Ma). A more saline lake persisted for ∼0.6 Ma across the subsequent warmth of the late Pliocene (3.268–2.734 Ma) before the lake desiccated at the Pleistocene intensification of Northern Hemisphere Glaciation. 
    more » « less