Abstract We divide the atmosphere into distinct spheres based on their physical, chemical, and dynamical traits. In deriving chemical budgets and climate trends, which differ across spheres, we need clearly defined boundaries. Our primary spheres are the troposphere and stratosphere (∼99.9% by mass), and the boundary between them is the tropopause. Every global climate‐weather model has one or more methods to calculate the lapse rate tropopause, but these involve subjective choices and are known to fail near the sub‐tropical jets and polar regions. Age‐of‐air tracers clock the effective time‐distance from the tropopause, allowing unambiguous separation of stratosphere from troposphere in the chaotic jet regions. We apply a global model with synthetic tracer e90 (90‐day e‐folding), focusing on ozone and temperature structures about the tropopause using ozone sonde and satellite observations. We calibrate an observation‐consistent tropopause for e90 using tropics‐plus‐midlatitudes and then apply it globally to calculate total tropospheric air‐mass and tropopause ozone values. The tropopause mixing barrier for the current UCI CTM is identified by a transition in the vertical transport gradient to stratospheric values of 15 days km−1, corresponding to an e90 tropopause at 81 ± 2 ppb with a global tropospheric air mass of 82.2 ± 0.3%. The best e90 tropopause based on sonde pressures is 70–80 ppb; but that for ozone is 80–90 ppb, implying that the CTM tropopause ozone values are too large. This approach of calibrating an age‐of‐air tropopause can be readily applied to other models and possibly used with observed age‐of‐air tracers like sulfur hexafluoride.
more »
« less
Age of air from ACE-FTS measurements of sulfur hexafluoride
Abstract. Climate models predict that the Brewer–Dobson circulation (BDC) will accelerate due to tropospheric warming, leading to a redistribution of trace gases and, consequently, to a change of the radiative properties of the atmosphere. Changes in the BDC are diagnosed by the so-called “age of air”, that is, the time since air in the stratosphere exited the troposphere. These changes can be derived from a long-term observation-based record of long-lived trace gases with increasing concentration in the troposphere, such as sulfur hexafluoride (SF6). The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) provides the longest available continuous time series of vertically resolved SF6 measurements, spanning 2004 to the present. In this study, a new age-of-air product is derived from the ACE-FTS SF6 dataset. The ACE-FTS product is in good agreement with other observation-based age-of-air datasets and shows the expected global distribution of age-of-air values. Age of air from a chemistry–climate model is evaluated, and the linear trend of the observation-based age of air is calculated in 12 regions within the lower stratospheric midlatitudes (14–20 km, 40–70°) in each hemisphere. In 8 of 12 regions, there was not a statistically significant trend. The trends in the other regions, specifically 50–60 and 60–70° S at 17–20 km and 40–50° N at 14–17 and 17–20 km, are negative and significant to 2 standard deviations. This is therefore the first observation-based age-of-air trend study to suggest an acceleration of the shallow branch of the BDC, which transports air poleward in the lower stratosphere, in regions within both hemispheres.
more »
« less
- Award ID(s):
- 2239242
- PAR ID:
- 10585192
- Publisher / Repository:
- Atmospheric Chemistry and Physics
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 25
- Issue:
- 7
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 4185 to 4209
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Asian summer monsoon (ASM) as a chemical transport system is investigated using a suite of models in preparation for an airborne field campaign over the Western Pacific. Results show that the dynamical process of anticyclone eddy shedding in the upper troposphere rapidly transports convectively uplifted Asian boundary layer air masses to the upper troposphere and lower stratosphere over the Western Pacific. The models show that the transported air masses contain significantly enhanced aerosol loading and a complex chemical mixture of trace gases that are relevant to ozone chemistry. The chemical forecast models consistently predict the occurrence of the shedding events, but the predicted concentrations of transported trace gases and aerosols often differ between models. The airborne measurements to be obtained in the field campaign are expected to help reduce the model uncertainties. Furthermore, the large‐scale seasonal chemical structure of the monsoon system is obtained from modeled carbon monoxide, a tracer of the convective transport of pollutants, which provides a new perspective of the ASM circulation, complementing the dynamical characterization of the monsoon.more » « less
-
Abstract. Pyrocumulonimbus clouds (pyroCbs) generated by intense wildfires can serve as a direct pathway for the injection of aerosols and gaseous pollutants into the lower stratosphere, resulting in significant chemical, radiative, and dynamical changes. Canada experienced an extremely severe wildfire season in 2023, with a total area burned that substantially exceeded those of previous events known to have impacted the stratosphere (such as the 2020 Australian fires). This season also had record-high pyroCb activity, which raises the question of whether the 2023 Canadian event resulted in significant stratospheric perturbations. Here, we investigate this anomalous wildfire season using retrievals from multiple satellite instruments, ACE-FTS (Atmospheric Chemistry Experiment – Fourier transform spectrometer), OMPS LP (Ozone Mapping and Profiler Suite Limb Profiler), and MLS (Microwave Limb Sounder), to determine the vertical extents of the wildfire smoke along with chemical signatures of biomass burning. These data show that smoke primarily reached the upper troposphere, and only a nominal amount managed to penetrate the tropopause. Only a few ACE-FTS occultations captured elevated abundances of biomass-burning products in the lowermost stratosphere. OMPS LP aerosol measurements also indicate that any smoke that made it past the tropopause did not last long enough or reach high enough to significantly perturb stratospheric composition. While this work focuses on Canadian wildfires given the extensive burned area, pyroCbs at other longitudes (e.g., Siberia) are also captured in the compositional analysis. These results highlight that despite the formation of many pyroCbs in major wildfires, those capable of penetrating the tropopause are extremely rare; this in turn means that even a massive area burned is not necessarily an indicator of stratospheric effects.more » « less
-
Abstract Atmospheric turbulence plays a key role in the mixing of trace gases and diffusion of heat and momentum, as well as in aircraft operations. Although numerous observational turbulence studies have been conducted using campaign experiments and operational data, understanding the turbulence characteristics particularly in the free atmosphere remains challenging due to its small-scale, intermittent, and sporadic nature, along with limited observational data. To address this, turbulence in the free atmosphere is estimated herein based on the Thorpe method by using operational high vertical-resolution radiosonde data (HVRRD) with vertical resolutions of about 5 or 10 m across near-global regions, provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) via the U.S. National Centers for Environmental Information (NCEI) for 6 years (October 2017–September 2023). Globally, turbulence is stronger in the troposphere than in the stratosphere, with maximum turbulence occurring about 6 km below the tropopause, followed by a sharp decrease above. Seasonal variations show strong tropospheric turbulence in summer and weak turbulence in winter for both hemispheres, while the stratosphere exhibits strong turbulence during spring. Regional analyses identify strong turbulence regions over the South Pacific and South Africa in the troposphere and over East Asia and South Africa in the stratosphere. Notably, turbulence information can be provided in regions and high altitudes that are not covered by commercial aircraft, suggesting its potential utility for both present and future high-altitude aircraft operations.more » « less
-
Age of stratospheric air is a well established metric for the stratospheric transport circulation. Rooted in a robust theoretical framework, this approach offers the benefit of being deducible from observations of trace gases. Given potential climate‐induced changes, observational constraints on stratospheric circulation are crucial. In the past two decades, scientific progress has been made in three main areas: (a) Enhanced process understanding and the development of process diagnostics led to better quantification of individual transport processes from observations and to a better understanding of model deficits. (b) The global age of air climatology is now well constrained by observations thanks to improved quality and quantity of data, including global satellite data, and through improved and consistent age calculation methods. (c) It is well established and understood that global models predict a decrease in age, that is, an accelerating stratospheric circulation, in response to forcing by greenhouse gases and ozone depleting substances. Observational records now confirm long‐term forced trends in mean age in the lower stratosphere. However, in the mid‐stratosphere, uncertainties in observational records are too large to confirm or disprove the model predictions. Continuous monitoring of stratospheric trace gases and further improved methods to derive age from those tracers will be crucial to better constrain variability and long‐term trends from observations. Future work on mean age as a metric for stratospheric transport will be important due to its potential to enhance the understanding of stratospheric composition changes, address climate model biases, and assess the impacts of proposed climate geoengineering methods.more » « less
An official website of the United States government

